Home
Class 12
MATHS
If [alphabetagamma-alpha] is to be squar...

If `[alphabetagamma-alpha]` is to be square root of two-rowed unit matrix, then `alpha,betaa n dgamma` should satisfy the relation. `1-alpha^2+betagamma=0` b. `alpha^2+betagamma=0` c. `1+alpha^2+betagamma=0` d. `1-alpha^2-betagamma=0`

A

`1-alpha^(2)+beta gamma=0`

B

`alpha^(2)+beta gamma-1=0`

C

`1+alpha^(2)+beta gamma=0`

D

`1-alpha^(2)-beta gamma=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix and its relationship with the square root of the two-rowed unit matrix. Let's denote the matrix as follows: \[ M = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] We know that \( M \) is equal to the square root of the two-rowed unit matrix, which can be represented as: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Taking the square of both sides, we have: \[ M^2 = I \] Now, we will compute \( M^2 \): \[ M^2 = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] Calculating the product: 1. The element at (1,1): \[ \alpha \cdot \alpha + \beta \cdot \gamma = \alpha^2 + \beta\gamma \] 2. The element at (1,2): \[ \alpha \cdot \beta + \beta \cdot (-\alpha) = \alpha\beta - \alpha\beta = 0 \] 3. The element at (2,1): \[ \gamma \cdot \alpha + (-\alpha) \cdot \gamma = \gamma\alpha - \alpha\gamma = 0 \] 4. The element at (2,2): \[ \gamma \cdot \beta + (-\alpha) \cdot (-\alpha) = \gamma\beta + \alpha^2 \] Thus, we can write: \[ M^2 = \begin{pmatrix} \alpha^2 + \beta\gamma & 0 \\ 0 & \gamma\beta + \alpha^2 \end{pmatrix} \] Setting \( M^2 \) equal to the identity matrix \( I \): \[ \begin{pmatrix} \alpha^2 + \beta\gamma & 0 \\ 0 & \gamma\beta + \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] From this, we can equate the corresponding elements: 1. From the (1,1) position: \[ \alpha^2 + \beta\gamma = 1 \] 2. From the (2,2) position: \[ \gamma\beta + \alpha^2 = 1 \] Both equations yield the same relation. Thus, we can conclude that: \[ \alpha^2 + \beta\gamma = 1 \] Rearranging gives: \[ 1 - \alpha^2 - \beta\gamma = 0 \] Now, we can identify the correct relation from the options given: The correct relation is: **d. \( 1 - \alpha^2 - \beta\gamma = 0 \)**

To solve the problem, we need to analyze the given matrix and its relationship with the square root of the two-rowed unit matrix. Let's denote the matrix as follows: \[ M = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] We know that \( M \) is equal to the square root of the two-rowed unit matrix, which can be represented as: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If A=[alphabetagamma-alpha] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[{:(alpha,beta),(gamma,alpha):}] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[[alpha,beta],[gamma,alpha]] is such that A^2=I , then (A) 1+alpha^2+betagamma=0 (B) 1-alpha^2+betagamma=0 (C) 1-alpha^2-betagamma=0 (D) 1+alpha^2-betagamma=0

If alpha,betaa n dgamma are the roots of x^3+8=0 then find the equation whose roots are alpha^2,beta^2a n dgamma^2 .

If 2x^(3) + 3x^(2) + 5x +6=0 has roots alpha, beta, gamma then find alpha + beta + gamma, alphabeta + betagamma + gammaalpha and alpha beta gamma

If the distances of the vertices of a triangle =ABC from the points of contacts of the incercle with sides are alpha,betaa n dgamma then prove that r^2=(alphabetagamma)/(alpha+beta+gamma)

If alpha,betaa n dgamma are roots of 2x^3+x^2-7=0 , then find the value of sum(alpha/beta+beta/alpha) .

A line makes angles alpha,betaa n dgamma with the coordinate axes. If alpha+beta=90^0, then find gammadot

If each of alpha, betaa n dgamma is a positive acute angle such that sin(alpha+beta-gamma) =1/2 , cos(beta+gamma-alpha)=1/2 and tan(gamma+alpha-beta)=1, find the values of alpha,betaa n dgammadot

CENGAGE ENGLISH-MATRICES-Exercises
  1. If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos...

    Text Solution

    |

  2. If A=[a b0a] is nth root of I2, then choose the correct statements: If...

    Text Solution

    |

  3. If [alphabetagamma-alpha] is to be square root of two-rowed unit matri...

    Text Solution

    |

  4. If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a.4B b...

    Text Solution

    |

  5. If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]...

    Text Solution

    |

  6. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  7. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  8. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  9. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  10. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  11. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  12. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  13. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  14. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  15. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  16. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  17. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  18. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  19. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  20. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |