Home
Class 12
MATHS
If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -...

If `[(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]` , then sum of all the elements of matrix `A` is `0` b. `1` c. `2` d. `-3`

A

0

B

1

C

2

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) from the equation: \[ \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} A = \begin{pmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{pmatrix} \] ### Step 1: Define Matrix A Let matrix \( A \) be defined as: \[ A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \] ### Step 2: Perform Matrix Multiplication Now we perform the multiplication of the two matrices: \[ \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} 2a - d & 2b - e & 2c - f \\ a & b & c \\ -3a + 4d & -3b + 4e & -3c + 4f \end{pmatrix} \] ### Step 3: Set Up Equations Now we equate the resulting matrix to the given matrix: \[ \begin{pmatrix} 2a - d & 2b - e & 2c - f \\ a & b & c \\ -3a + 4d & -3b + 4e & -3c + 4f \end{pmatrix} = \begin{pmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{pmatrix} \] From this, we can derive the following equations: 1. \( 2a - d = -1 \) 2. \( 2b - e = -8 \) 3. \( 2c - f = -10 \) 4. \( a = 1 \) 5. \( b = -2 \) 6. \( c = -5 \) 7. \( -3a + 4d = 9 \) 8. \( -3b + 4e = 22 \) 9. \( -3c + 4f = 15 \) ### Step 4: Solve for Variables From equations 4, 5, and 6, we have: - \( a = 1 \) - \( b = -2 \) - \( c = -5 \) Now, substituting \( a \) into equation 1: \[ 2(1) - d = -1 \implies 2 - d = -1 \implies d = 3 \] Substituting \( b \) into equation 2: \[ 2(-2) - e = -8 \implies -4 - e = -8 \implies e = 4 \] Substituting \( c \) into equation 3: \[ 2(-5) - f = -10 \implies -10 - f = -10 \implies f = 0 \] ### Step 5: Collect Values Now we have: \[ A = \begin{pmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{pmatrix} \] ### Step 6: Calculate the Sum of All Elements Now we find the sum of all elements in matrix \( A \): \[ 1 + (-2) + (-5) + 3 + 4 + 0 = 1 \] ### Final Answer The sum of all elements of matrix \( A \) is \( 1 \).

To solve the problem, we need to find the matrix \( A \) from the equation: \[ \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} A = ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If [(2,-1),(1,0),(-3,4)]A=[(-1,-8,-10),(1,-2,-5),(9,22,15)] , find A.

Find the matrix A such that [{:(2,-1), (1,0),(-3,4):}]A=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}]

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

If A = [(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)] and B = [(1,2,-2), (-1,3,0), (0,-2,1)] find (AB)^(-1)

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

CENGAGE ENGLISH-MATRICES-Exercises
  1. If [alphabetagamma-alpha] is to be square root of two-rowed unit matri...

    Text Solution

    |

  2. If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a.4B b...

    Text Solution

    |

  3. If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]...

    Text Solution

    |

  4. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  5. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  6. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  7. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  8. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  9. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  10. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  11. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  12. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  13. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  14. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  15. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  16. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  17. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  18. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  19. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  20. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |