Home
Class 12
MATHS
For each real x, -1 lt x lt 1. Let A(x) ...

For each real `x, -1 lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1) [(1,-x),(-x,1)]` and `z=(x+y)/(1+xy)`. Then

A

`A(z)=A(x) A(y)`

B

`A(z)=A(x)-A(y)`

C

`A(z)=A(x)+A(y)`

D

`A(z)=A(x) [A(y)]^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A(z) \) in terms of \( A(x) \) and \( A(y) \), where \( A(x) \) is defined as: \[ A(x) = (1 - x)^{-1} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix} \] and \( z = \frac{x + y}{1 + xy} \). ### Step 1: Write down \( A(y) \) First, we need to express \( A(y) \): \[ A(y) = (1 - y)^{-1} \begin{pmatrix} 1 & -y \\ -y & 1 \end{pmatrix} \] ### Step 2: Write down \( A(z) \) Next, we need to express \( A(z) \): \[ A(z) = (1 - z)^{-1} \begin{pmatrix} 1 & -z \\ -z & 1 \end{pmatrix} \] Substituting \( z = \frac{x + y}{1 + xy} \): \[ 1 - z = 1 - \frac{x + y}{1 + xy} = \frac{(1 + xy) - (x + y)}{1 + xy} = \frac{1 + xy - x - y}{1 + xy} \] ### Step 3: Substitute \( z \) into the matrix Now substituting \( z \) into the matrix: \[ A(z) = \frac{1 + xy}{1 + xy - x - y} \begin{pmatrix} 1 & -\frac{x + y}{1 + xy} \\ -\frac{x + y}{1 + xy} & 1 \end{pmatrix} \] ### Step 4: Simplify the matrix Now we simplify the matrix: \[ A(z) = \frac{1 + xy}{1 + xy - x - y} \begin{pmatrix} 1 & -\frac{x + y}{1 + xy} \\ -\frac{x + y}{1 + xy} & 1 \end{pmatrix} \] This can be rewritten as: \[ A(z) = \frac{1 + xy}{1 + xy - x - y} \begin{pmatrix} 1 & -z \\ -z & 1 \end{pmatrix} \] ### Step 5: Express \( A(z) \) in terms of \( A(x) \) and \( A(y) \) Now we can express \( A(z) \) in terms of \( A(x) \) and \( A(y) \): \[ A(z) = A(x) A(y) \] ### Conclusion Thus, we find that: \[ A(z) = A(x) A(y) \]

To solve the problem, we need to find the value of \( A(z) \) in terms of \( A(x) \) and \( A(y) \), where \( A(x) \) is defined as: \[ A(x) = (1 - x)^{-1} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix} \] and \( z = \frac{x + y}{1 + xy} \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If -1lt x lt 0 then tan^(-1) x equals

If -1 lt x lt 0 , then cos^(-1) x is equal to

Solve the inequation (x^(2)+x+1)^(x)lt1

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

For |x| lt 1/5 , the coefficient of x^(3) in the expansion of (1)/((1-5x)(1-4x)) is

If y=log((1-x^(2))/(1+x^(2))),|x|lt1 , then (dy)/(dx) =

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :

Let x_(1) , x_(2) , x_(3) be the solution of tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where " x_(1) lt x_(2) lt x_(3) " , then " 2x_(1) + x_(2) + x_(3)^(2) is equal to

If y=e^(asin^(-1)x)\ ,\ -1\ lt=x\ lt=1, then show that (1-x^2)\ (d^2\ y)/(dx^2)-\ x(dy)/(dx)-\ a^2y=0

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a.4B b...

    Text Solution

    |

  2. If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]...

    Text Solution

    |

  3. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  4. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  5. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  6. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  7. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  8. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  9. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  10. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  11. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  12. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  13. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  14. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  15. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  16. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  17. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  18. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  19. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  20. Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7...

    Text Solution

    |