Home
Class 12
MATHS
A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3...

`A=[[2,1],[4,1]]; B=[[3,4],[2,3]]` & `c=[[3,-4],[-2,3]]`, `tr(A)+tr[(ABC)/2]+tr[(A(BC)^2)/4]+tr[(A(BC)^2)/8]+.....oo` is:

A

6

B

9

C

12

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions outlined in the video transcript. ### Step 1: Define the matrices We have the following matrices: - \( A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix} \) - \( B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \) - \( C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \) ### Step 2: Calculate the product \( BC \) To find \( BC \): \[ BC = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 3 + 4 \cdot (-2) = 9 - 8 = 1 \) - First row, second column: \( 3 \cdot (-4) + 4 \cdot 3 = -12 + 12 = 0 \) - Second row, first column: \( 2 \cdot 3 + 3 \cdot (-2) = 6 - 6 = 0 \) - Second row, second column: \( 2 \cdot (-4) + 3 \cdot 3 = -8 + 9 = 1 \) Thus, we have: \[ BC = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \] where \( I \) is the identity matrix. ### Step 3: Analyze the series The series we need to evaluate is: \[ \text{tr}(A) + \text{tr}\left(\frac{ABC}{2}\right) + \text{tr}\left(\frac{AB^2C^2}{4}\right) + \text{tr}\left(\frac{AB^3C^3}{8}\right) + \ldots \] Since \( BC = I \), we can simplify: - \( ABC = A \cdot I = A \) - \( AB^2C^2 = A \cdot I^2 = A \) - \( AB^3C^3 = A \cdot I^3 = A \) Thus, the series simplifies to: \[ \text{tr}(A) + \text{tr}\left(\frac{A}{2}\right) + \text{tr}\left(\frac{A}{4}\right) + \text{tr}\left(\frac{A}{8}\right) + \ldots \] ### Step 4: Factor out \( \text{tr}(A) \) Let \( x = \text{tr}(A) \). The series becomes: \[ x + \frac{x}{2} + \frac{x}{4} + \frac{x}{8} + \ldots \] ### Step 5: Sum the infinite geometric series The series is a geometric series with: - First term \( a = x \) - Common ratio \( r = \frac{1}{2} \) The sum \( S \) of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{x}{1 - \frac{1}{2}} = \frac{x}{\frac{1}{2}} = 2x \] ### Step 6: Calculate \( \text{tr}(A) \) To find \( \text{tr}(A) \): \[ \text{tr}(A) = 2 + 1 = 3 \] ### Step 7: Final result Substituting back, we have: \[ S = 2 \cdot \text{tr}(A) = 2 \cdot 3 = 6 \] Thus, the final answer is: \[ \boxed{6} \]

To solve the problem step by step, we will follow the instructions outlined in the video transcript. ### Step 1: Define the matrices We have the following matrices: - \( A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix} \) - \( B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \) - \( C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let three matrices A=[(2 ,1),( 4, 1)]; B=[(3, 4),( 2, 3)] and C=[(3,-4),(-2,3)], then tr(A) + tr((ABC)/2) + tr((A(BC)^2)/4) + tr((A(BC)^3)/8) + ......∞ (a)6 (b) 9 (c) 12 (d) None of these

If A=[[2,3],[4,5]],B=[[3,4],[7,2]], C=[[1,0],[0,7]] then verify that (AB)C=A(BC)

Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4),(-2,3)]. Then the value of the sum tr(A)+tr((ABC)/2) +tr((A(BC)^2)/4)+tr((A(BC)^3)/8)+.......+oo is (A) 6 (B) 9 (C) 12 (D) none of these

If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , compute the following: A+(2B-C)

If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , comopute the following: A+(B+C)

If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , compute the following: (A+B)+C

If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , compute the following: -2A+(B+C)

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

If A=[[1, 1,-1],[ 2, 0, 3],[ 3,-1, 2]] , B=[[1, 3],[0,2],[-1, 4]] and C=[[1,2, 3,-4],[ 2, 0,-2, 1]] , find A(BC), (AB)C and show that (A B)C = A(B C) .

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

CENGAGE ENGLISH-MATRICES-Exercises
  1. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  2. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  3. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  4. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  5. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  6. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  7. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  8. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  9. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  10. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  11. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  12. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  13. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  14. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  15. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  16. Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7...

    Text Solution

    |

  17. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  18. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  19. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  20. If A=[(a,b,c),(x,y,z),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |