Home
Class 12
MATHS
Matrix A such that A^2=2A-I ,w h e r eI ...

Matrix `A` such that `A^2=2A-I ,w h e r eI` is the identity matrix, the for `ngeq2. A^n` is equal to `2^(n-1)A-(n-1)l` b. `2^(n-1)A-I` c. `n A-(n-1)l` d. `n A-I`

A

`2^(n-1) A-(n-1)I`

B

`2^(n-1) A-I`

C

`nA-(n-1)I`

D

`nA-I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( A^n \) given that \( A^2 = 2A - I \), where \( I \) is the identity matrix, and \( n \geq 2 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ A^2 = 2A - I \] 2. **Find \( A^3 \)**: \[ A^3 = A \cdot A^2 \] Substitute \( A^2 \): \[ A^3 = A \cdot (2A - I) = 2A^2 - A \] Now substitute \( A^2 \) again: \[ A^3 = 2(2A - I) - A = 4A - 2I - A = 3A - 2I \] 3. **Find \( A^4 \)**: \[ A^4 = A \cdot A^3 \] Substitute \( A^3 \): \[ A^4 = A \cdot (3A - 2I) = 3A^2 - 2A \] Now substitute \( A^2 \) again: \[ A^4 = 3(2A - I) - 2A = 6A - 3I - 2A = 4A - 3I \] 4. **Identify the pattern**: From the calculations: - \( A^2 = 2A - I \) - \( A^3 = 3A - 2I \) - \( A^4 = 4A - 3I \) We can observe a pattern forming: - For \( n = 2 \), \( A^2 = 2A - 1I \) - For \( n = 3 \), \( A^3 = 3A - 2I \) - For \( n = 4 \), \( A^4 = 4A - 3I \) It appears that: \[ A^n = nA - (n-1)I \] 5. **Generalize the expression**: Thus, for \( n \geq 2 \): \[ A^n = nA - (n-1)I \] ### Conclusion: The correct expression for \( A^n \) is: \[ A^n = nA - (n-1)I \]

To solve the problem, we need to find the expression for \( A^n \) given that \( A^2 = 2A - I \), where \( I \) is the identity matrix, and \( n \geq 2 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ A^2 = 2A - I \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If I_n is the identity matrix of order n, then rank of I_n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to (a) A^(-1) (b) A (c) A^n (d) I_n

If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. I-(2^n-1)Z d. none of these

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If I_n is the identity matrix of order n then (I_n)^-1 (A) does not exist (B) =0 (C) =I_n (D) =nI_n

If A is a square matrix such that A^2=A ,t h e n(I+A)^3-7A is equal to (a) A (b) I-A (c) I (d) 3A

If sum_(r=1)^n r^4=I(n),t h e nsum_(r=1)^n(2r-1)^4 is equal to a. I(2n)-I(n) b. I(2n)-16 I(n) c. I(2n)-8I(n) d. I(2n)-4I(n)

i ^n+i ^(n+1)+i ^(n+2)+i ^(n+3) (n∈N) is equal to

CENGAGE ENGLISH-MATRICES-Exercises
  1. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  2. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  3. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  4. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  5. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  6. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  7. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  8. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  9. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  10. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  11. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  12. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  13. Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7...

    Text Solution

    |

  14. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  15. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  16. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  17. If A=[(a,b,c),(x,y,z),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  18. If A(alpha,beta)=[cosalphas inalpha0-s inalphacosalpha0 0 0e^(beta)],t...

    Text Solution

    |

  19. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  20. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |