Home
Class 12
MATHS
If matrix A is given by A=[[6,11] , [2,4...

If matrix A is given by `A=[[6,11] , [2,4]]` then determinant of `A^(2005)-6A^(2004)` is

A

`2^(2006)`

B

`(-11)2^(2005)`

C

`-2^(2005).7`

D

`(-9) 2^(2004)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the expression \( A^{2005} - 6A^{2004} \), where the matrix \( A \) is given by: \[ A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix} \] ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (6)(4) - (2)(11) = 24 - 22 = 2 \] ### Step 2: Express \( A^{2005} - 6A^{2004} \) We can factor out \( A^{2004} \) from the expression: \[ A^{2005} - 6A^{2004} = A^{2004}(A - 6I) \] where \( I \) is the identity matrix. ### Step 3: Calculate \( A - 6I \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] Thus, \[ 6I = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} \] Now, we can compute \( A - 6I \): \[ A - 6I = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 11 \\ 2 & -2 \end{bmatrix} \] ### Step 4: Calculate the determinant of \( A - 6I \) Using the determinant formula for the matrix \( A - 6I \): \[ \text{det}(A - 6I) = (0)(-2) - (2)(11) = 0 - 22 = -22 \] ### Step 5: Calculate the determinant of \( A^{2005} - 6A^{2004} \) Using the property of determinants: \[ \text{det}(A^{2005} - 6A^{2004}) = \text{det}(A^{2004}) \cdot \text{det}(A - 6I) \] Since \( \text{det}(A^{n}) = (\text{det}(A))^n \): \[ \text{det}(A^{2004}) = (\text{det}(A))^{2004} = 2^{2004} \] Now, substituting back: \[ \text{det}(A^{2005} - 6A^{2004}) = 2^{2004} \cdot (-22) \] ### Final Result Thus, the determinant of \( A^{2005} - 6A^{2004} \) is: \[ \text{det}(A^{2005} - 6A^{2004}) = -22 \cdot 2^{2004} \]

To solve the problem, we need to find the determinant of the expression \( A^{2005} - 6A^{2004} \), where the matrix \( A \) is given by: \[ A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix} \] ### Step 1: Calculate the determinant of matrix \( A \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If matrix A is given by A=|[6, 11], [2, 4]| , then the determinant of A^(2005)-6A^(2004) is a. 2^(2006) b. (-11)2^(2005) c. -2^(2005) d. (-9)2^(2004)

Compute the adjoint of the matrix A given by A=[[1, 4, 5],[ 3 ,2, 6],[ 0 ,1, 0]] and verify that A(a d jA)=|A|I=(A d jA)Adot

Compute the adjoint of the matrix A given by A=[[1, 4, 5], [3, 2, 6], [0 ,1 ,0]] and verify that A(a d j\ A)=|A|I=(a d j\ A)Adot

Find a matrix A , if A+[2 3-1 4]=[3-6-3 8] .

If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)] , then the determinant value of BA is

Find a matrix A ,if A+[[2 ,3],[ -1, 4]]=[[3,-6],[-3, 8]]

If the rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is 1 then the value of a is (A) -1 (B) 2 (C) -6 (D) 4

Express the matrix A=[[2,4,-6],[ 7,3,5],[ 1,-2, 4]] as the sum of a symmetric and skew symmetric matrix.

Find the determinants of minors of the determinant |{:(1,2,3),(-4,3,6),(2,-7,9):}|

Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 9|

CENGAGE ENGLISH-MATRICES-Exercises
  1. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  2. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  3. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  4. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  5. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  6. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  7. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  8. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  9. Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7...

    Text Solution

    |

  10. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  11. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  12. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  13. If A=[(a,b,c),(x,y,z),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  14. If A(alpha,beta)=[cosalphas inalpha0-s inalphacosalpha0 0 0e^(beta)],t...

    Text Solution

    |

  15. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  16. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  17. If A = [[1 ,2],[2,1]]and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  18. There are two possible values of A in the solution of the matrix equat...

    Text Solution

    |

  19. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  20. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |