Home
Class 12
MATHS
If A=[(0,x),(y,0)] and A^(3)+A=O then su...

If `A=[(0,x),(y,0)]` and `A^(3)+A=O` then sum of possible values of xy is

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A = \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} \) and the equation \( A^3 + A = O \), where \( O \) is the zero matrix. ### Step-by-Step Solution: 1. **Rewrite the Equation**: We start with the equation: \[ A^3 + A = O \] This can be factored as: \[ A(A^2 + I) = O \] where \( I \) is the identity matrix. **Hint**: Remember that if a product of matrices equals the zero matrix, at least one of the matrices must be singular (have a determinant of zero). 2. **Determinant Condition**: From the factored equation, we have: \[ \text{det}(A) \cdot \text{det}(A^2 + I) = 0 \] This gives us two cases to consider: - Case 1: \( \text{det}(A) = 0 \) - Case 2: \( \text{det}(A^2 + I) = 0 \) **Hint**: Calculate the determinant of matrix \( A \). 3. **Case 1: Determinant of A**: The determinant of \( A \) is calculated as: \[ \text{det}(A) = 0 \cdot 0 - x \cdot y = -xy \] Setting this equal to zero gives: \[ -xy = 0 \implies xy = 0 \] This means either \( x = 0 \) or \( y = 0 \). **Hint**: Think about the implications of \( xy = 0 \) on the values of \( x \) and \( y \). 4. **Case 2: Determinant of \( A^2 + I \)**: First, we need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} = \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} \] Now, adding the identity matrix \( I \): \[ A^2 + I = \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} xy + 1 & 0 \\ 0 & xy + 1 \end{pmatrix} \] The determinant of \( A^2 + I \) is: \[ \text{det}(A^2 + I) = (xy + 1)(xy + 1) = (xy + 1)^2 \] Setting this equal to zero gives: \[ (xy + 1)^2 = 0 \implies xy + 1 = 0 \implies xy = -1 \] **Hint**: Consider the implications of this determinant condition on the values of \( xy \). 5. **Possible Values of \( xy \)**: From both cases, we have: - From Case 1: \( xy = 0 \) - From Case 2: \( xy = -1 \) 6. **Sum of Possible Values**: We need to find the sum of the possible values of \( xy \): \[ 0 + (-1) = -1 \] ### Final Answer: The sum of possible values of \( xy \) is \( \boxed{-1} \).

To solve the problem, we need to analyze the matrix \( A = \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} \) and the equation \( A^3 + A = O \), where \( O \) is the zero matrix. ### Step-by-Step Solution: 1. **Rewrite the Equation**: We start with the equation: \[ A^3 + A = O ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If 4x+3y-12=0 touches (x-p)^(2)+(y-p)^(2)=p^(2) , then the sum of all the possible values of p is

If the equation 4y^(3) - 8a^(2)yx^(2) - 3ay^(2)x +8x^(3) = 0 represents three straight lines, two of them are perpendicular, then sum of all possible values of a is equal to

If 3x^(2) -17x+10 =0 and x^(2)-5x+m =0 has a common root, then sum of all possible real values of 'm' is:

It is given that the equation x^2 + ax + 20 = 0 has integer roots. What is the sum of all possible values of a ?

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if xy+yz+zx=1 , then

If the gradient of one of the lines x^(2)+hxy+2y^(2)=0 twice that of the other , then sum of possible values of h ____________.

If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where xne0 then the minimum possible value of x^(2)+y^(2) is

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x=y=z and xyz ≥ 3 sqrt(3) , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y) , where xy< 0, then the possible value of z is (are)

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A and B are symmetric matrices of the same order and X=AB+BA and Y...

    Text Solution

    |

  2. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  3. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  4. Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7...

    Text Solution

    |

  5. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  6. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  7. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  8. If A=[(a,b,c),(x,y,z),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  9. If A(alpha,beta)=[cosalphas inalpha0-s inalphacosalpha0 0 0e^(beta)],t...

    Text Solution

    |

  10. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  11. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  12. If A = [[1 ,2],[2,1]]and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  13. There are two possible values of A in the solution of the matrix equat...

    Text Solution

    |

  14. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  15. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |

  16. If A is order 3 square matrix such that |A|=2, then |"adj (adj (adj A)...

    Text Solution

    |

  17. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  18. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  19. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  20. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |