Home
Class 12
MATHS
Which of the following is an orthogonal ...

Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7 − 3 / 7 2 / 7 3 / 7 6 / 7 3 / 7 − 6 / 7 2 / 7 ⎤ ⎥ ⎦ (b) ⎡ ⎢ ⎣ 6 / 7 2 / 7 3 / 7 2 / 7 − 3 / 7 6 / 7 3 / 7 6 / 7 − 2 / 7 ⎤ ⎥ ⎦ (c) ⎡ ⎢ ⎣ − 6 / 7 − 2 / 7 − 3 / 7 2 / 7 3 / 7 6 / 7 − 3 / 7 6 / 7 2 / 7 ⎤ ⎥ ⎦ (d) ⎡ ⎢ ⎣ 6 / 7 − 2 / 7 3 / 7 2 / 7 2 / 7 − 3 / 7 − 6 / 7 2 / 7 3 / 7 ⎤ ⎥ ⎦

A

`[(6//7,2//7,-3//7),(2//7,3//7,6//7),(3//7,-6//7,2//7)]`

B

`[(6//7,2//7,3//7),(2//7,-3//7,6//7),(3//7,6//7,-2//7)]`

C

`[(-6//7,-2//7,-3//7),(2//7,3//7,6//7),(-3//7,6//7,2//7)]`

D

`[(6//7,-2//7,3//7),(2//7,2//7,-3//7),(-6//7,2//7,3//7)]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given matrices is an orthogonal matrix, we need to check if the product of the matrix and its transpose results in the identity matrix. A matrix \( A \) is orthogonal if \( A^T A = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. Let's denote the matrices as follows: 1. \( A_1 = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \end{pmatrix} \) 2. \( A_2 = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & -\frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{pmatrix} \) 3. \( A_3 = \begin{pmatrix} -\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \) 4. \( A_4 = \begin{pmatrix} \frac{6}{7} & -\frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{3}{7} \\ -\frac{6}{7} & \frac{2}{7} & \frac{3}{7} \end{pmatrix} \) ### Step 1: Calculate the transpose of each matrix 1. \( A_1^T = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \) 2. \( A_2^T = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & -\frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{pmatrix} \) 3. \( A_3^T = \begin{pmatrix} -\frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ -\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \) 4. \( A_4^T = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & -\frac{6}{7} \\ -\frac{2}{7} & \frac{2}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{3}{7} & \frac{3}{7} \end{pmatrix} \) ### Step 2: Multiply each matrix by its transpose We will calculate \( A_1 A_1^T \), \( A_2 A_2^T \), \( A_3 A_3^T \), and \( A_4 A_4^T \). #### For \( A_1 \): \[ A_1 A_1^T = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \end{pmatrix} \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \] Calculating this product will give us a 3x3 matrix. #### For \( A_2 \): \[ A_2 A_2^T = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & -\frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{pmatrix} \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & -\frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{pmatrix} \] Calculating this product will give us a 3x3 matrix. #### For \( A_3 \): \[ A_3 A_3^T = \begin{pmatrix} -\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \begin{pmatrix} -\frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ -\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \] Calculating this product will give us a 3x3 matrix. #### For \( A_4 \): \[ A_4 A_4^T = \begin{pmatrix} \frac{6}{7} & -\frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{3}{7} \\ -\frac{6}{7} & \frac{2}{7} & \frac{3}{7} \end{pmatrix} \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & -\frac{6}{7} \\ -\frac{2}{7} & \frac{2}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{3}{7} & \frac{3}{7} \end{pmatrix} \] Calculating this product will give us a 3x3 matrix. ### Step 3: Check if the result is the identity matrix After calculating the products for each matrix, we will check if any of the resulting matrices equal the identity matrix \( I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \). ### Conclusion The matrix that satisfies the condition \( A A^T = I \) is the orthogonal matrix.

To determine which of the given matrices is an orthogonal matrix, we need to check if the product of the matrix and its transpose results in the identity matrix. A matrix \( A \) is orthogonal if \( A^T A = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. Let's denote the matrices as follows: 1. \( A_1 = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \end{pmatrix} \) 2. \( A_2 = \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & -\frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{pmatrix} \) 3. \( A_3 = \begin{pmatrix} -\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix} \) 4. \( A_4 = \begin{pmatrix} \frac{6}{7} & -\frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{2}{7} & -\frac{3}{7} \\ -\frac{6}{7} & \frac{2}{7} & \frac{3}{7} \end{pmatrix} \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Which of the following in an orthogonal matrix [6//7 2//7-3//7 2//7 3//7 6//7 3//7-6//7 2//7] b. [6//7 2//7 3//7 2//7-3//7 6//7 3//7 6//7-2//7] c. [-6//7-2//7-3//7 2//7 3//7 6//7-3//7 6//7 2//7] d. [6//7-2//7 3//7 2//7 3//7-3//7-6//7 2//7 3//7]

Median of the following numbers 4,4,5,7,6,7,7,12,3 is

Add the following fractions: 1/6+4/6 (ii) 2/7+3/7+4/7

The range of the following set of observations 2,3,5,9, 8, 7, 6, 5, 7, 4, 3 is

If the mean of and 7 is 7, then 6 (b) 7 8 (d) 9

Evaluate the following: (2+sqrt(3))^7+(2-sqrt(3))^7

Simplify the following 3frac{1}{7}-{1/6 xx (4div 3frac{1}{2}-7)}

Write the following fractions in descending order: 7/(40), 7/(17), 7/(30), 7/(6), 7/(50), 7/(2), 1(3)/(4)

Find the image of the point (1, 2, 3) in the line (x-6)/(3)=(y-7)/(2)=(z-7)/(-2) .

Find the image of the point (1, 2, 3) in the line (x-6)/(3)=(y-7)/(2)=(z-7)/(-2) .

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b....

    Text Solution

    |

  2. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  3. Which of the following is an orthogonal matrix ? ( ⎡ ⎢ ⎣ 6 / 7 2 / 7...

    Text Solution

    |

  4. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  5. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  6. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  7. If A=[(a,b,c),(x,y,z),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  8. If A(alpha,beta)=[cosalphas inalpha0-s inalphacosalpha0 0 0e^(beta)],t...

    Text Solution

    |

  9. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  10. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  11. If A = [[1 ,2],[2,1]]and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  12. There are two possible values of A in the solution of the matrix equat...

    Text Solution

    |

  13. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  14. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |

  15. If A is order 3 square matrix such that |A|=2, then |"adj (adj (adj A)...

    Text Solution

    |

  16. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  17. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  18. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  19. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  20. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |