Home
Class 12
MATHS
There are two possible values of A in th...

There are two possible values of A in the solution of the matrix equation
`[(2A+1,-5),(-4,A)]^(-1) [(A-5,B),(2A-2,C)]=[(14,D),(E,F)]`
where A, B, C, D, E and F are real numbers. The absolute value of the difference of these two solutions, is

A

`8/3`

B

`19/3`

C

`1/3`

D

`11/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the matrix equation \[ \begin{pmatrix} 2A + 1 & -5 \\ -4 & A \end{pmatrix}^{-1} \begin{pmatrix} A - 5 & B \\ 2A - 2 & C \end{pmatrix} = \begin{pmatrix} 14 & D \\ E & F \end{pmatrix} \] we will follow these steps: ### Step 1: Find the inverse of the first matrix The inverse of a 2x2 matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is given by \[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \[ \begin{pmatrix} 2A + 1 & -5 \\ -4 & A \end{pmatrix} \] we have: - \(a = 2A + 1\) - \(b = -5\) - \(c = -4\) - \(d = A\) The determinant \(D\) is \[ D = (2A + 1)A - (-5)(-4) = 2A^2 + A - 20 \] Thus, the inverse is \[ \frac{1}{2A^2 + A - 20} \begin{pmatrix} A & 5 \\ 4 & 2A + 1 \end{pmatrix} \] ### Step 2: Multiply the inverse with the second matrix Now we need to multiply this inverse with the second matrix \[ \begin{pmatrix} A - 5 & B \\ 2A - 2 & C \end{pmatrix} \] The product is \[ \frac{1}{2A^2 + A - 20} \begin{pmatrix} A & 5 \\ 4 & 2A + 1 \end{pmatrix} \begin{pmatrix} A - 5 & B \\ 2A - 2 & C \end{pmatrix} \] Calculating the first element of the product: \[ A(A - 5) + 5(2A - 2) = A^2 - 5A + 10A - 10 = A^2 + 5A - 10 \] Calculating the second element of the first row: \[ A \cdot B + 5 \cdot C \] Calculating the first element of the second row: \[ 4(A - 5) + (2A + 1)(2A - 2) = 4A - 20 + (4A^2 - 4A + 2A - 2) = 4A^2 + 4A - 22 \] Calculating the second element of the second row: \[ 4B + (2A + 1)C \] So we have: \[ \frac{1}{2A^2 + A - 20} \begin{pmatrix} A^2 + 5A - 10 & AB + 5C \\ 4A^2 + 4A - 22 & 4B + (2A + 1)C \end{pmatrix} = \begin{pmatrix} 14 & D \\ E & F \end{pmatrix} \] ### Step 3: Set up equations From the equality of matrices, we can set up the following equations: 1. \( \frac{A^2 + 5A - 10}{2A^2 + A - 20} = 14 \) 2. \( \frac{AB + 5C}{2A^2 + A - 20} = D \) 3. \( \frac{4A^2 + 4A - 22}{2A^2 + A - 20} = E \) 4. \( \frac{4B + (2A + 1)C}{2A^2 + A - 20} = F \) ### Step 4: Solve the first equation From the first equation: \[ A^2 + 5A - 10 = 14(2A^2 + A - 20) \] Expanding gives: \[ A^2 + 5A - 10 = 28A^2 + 14A - 280 \] Rearranging gives: \[ -27A^2 - 9A + 270 = 0 \] Dividing by -9: \[ 3A^2 + A - 30 = 0 \] ### Step 5: Factor or use the quadratic formula Using the quadratic formula: \[ A = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 360}}{6} = \frac{-1 \pm 19}{6} \] Thus, we have: 1. \( A = 3 \) 2. \( A = -\frac{10}{3} \) ### Step 6: Find the absolute difference The absolute difference is: \[ |3 - (-\frac{10}{3})| = |3 + \frac{10}{3}| = | \frac{9}{3} + \frac{10}{3} | = | \frac{19}{3} | = \frac{19}{3} \] ### Final Answer The absolute value of the difference of these two solutions is \[ \frac{19}{3} \]

To solve the matrix equation \[ \begin{pmatrix} 2A + 1 & -5 \\ -4 & A \end{pmatrix}^{-1} \begin{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

There are two possible values of A in the solution of the matrix equation [[2A+1,-5],[-4,A]]^(-1) [[A-5,B],[2A-2,C]]= [[14,D],[E,F]] , where A, B, C, D, E, F are real numbers. The absolute value of the difference of these two solutions, is

The number of solutions of the matrix equation X^2=[[1, 1],[ 2, 3]] is (A) more than 2 (B) 2 (C) 0 (D) 1

Number of distinct real solutions of the equation x^(2)+((x)/(x-1))^(2)=8 is (a) 1 (b) 2 (c)3 (d)4

The number of real solutions of the equation x^(2)+5|x|+4=0 are A) 4 B) 2 C) 1 D) 0

The number of real solutions of the equation -x^2+x-1=sin^4x is (A) 1 (B) 2 (C) 0 (D) 4

In Figure A B C D\ a n d\ A E F D are two parallelograms. Prove that: P E=F Q

The number of real solutions of |2x-x^2-3|=1 is (a) 0 (b) 2 (c) 3 (d) 4

The number of solution of equation |x-1|=e^x is (A) 0 (B) 1 (C) 2 (D) none of these

Find the value of a, b, c and d from the equation: [[a-b,2a+c],[2a-b,3c+d]]=[[-1, 5],[ 0 ,13]]

The number of solution of equation |x-1|= e^x is (A) 0 (B) 1 (C) 2 (D) none of these

CENGAGE ENGLISH-MATRICES-Exercises
  1. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |

  2. If A = [[1 ,2],[2,1]]and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  3. There are two possible values of A in the solution of the matrix equat...

    Text Solution

    |

  4. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  5. If A=[1tanx-tanx1], show that A^T A^(-1)=[cos2x-sin2xsin2xcos2x]

    Text Solution

    |

  6. If A is order 3 square matrix such that |A|=2, then |"adj (adj (adj A)...

    Text Solution

    |

  7. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  8. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  9. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  10. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  11. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  12. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  13. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  14. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  15. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  16. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  17. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  18. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  19. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  20. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |