Home
Class 12
MATHS
If A=[a("ij")](4xx4), such that a("ij")=...

If `A=[a_("ij")]_(4xx4)`, such that `a_("ij")={(2",","when "i=j),(0",","when "i ne j):}`, then `{("det (adj (adj A))")/(7)}` is (where `{*}` represents fractional part function)

A

`1//7`

B

`2//7`

C

`3//7`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Construct the Matrix A Given that \( A = [a_{ij}]_{4 \times 4} \) where: - \( a_{ij} = 2 \) when \( i = j \) (diagonal elements) - \( a_{ij} = 0 \) when \( i \neq j \) (off-diagonal elements) Thus, the matrix \( A \) can be represented as: \[ A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \] ### Step 2: Calculate the Determinant of A Since \( A \) is a diagonal matrix, the determinant is the product of the diagonal elements: \[ \text{det}(A) = 2 \times 2 \times 2 \times 2 = 2^4 = 16 \] ### Step 3: Calculate the Determinant of the Adjoint of A The adjoint of a matrix \( A \) is given by: \[ \text{adj}(A) = \text{det}(A) \cdot A^{-1} \] For a \( n \times n \) matrix, the determinant of the adjoint is given by: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} \] Here, \( n = 4 \): \[ \text{det}(\text{adj}(A)) = (16)^{4-1} = 16^3 = 4096 \] ### Step 4: Calculate the Determinant of the Adjoint of the Adjoint of A Using the same property: \[ \text{det}(\text{adj}(\text{adj}(A))) = (\text{det}(\text{adj}(A)))^{n-1} \] Thus, \[ \text{det}(\text{adj}(\text{adj}(A))) = (4096)^{4-1} = 4096^3 \] Calculating \( 4096 \): \[ 4096 = 2^{12} \quad \text{(since } 16 = 2^4 \text{, so } 16^3 = (2^4)^3 = 2^{12}) \] Thus, \[ \text{det}(\text{adj}(\text{adj}(A))) = (2^{12})^3 = 2^{36} \] ### Step 5: Calculate the Fractional Part of \(\frac{\text{det}(\text{adj}(\text{adj}(A)))}{7}\) Now we need to find: \[ \frac{2^{36}}{7} \] Calculating \( 2^{36} \): \[ 2^{36} = 68719476736 \] Now dividing by 7: \[ 68719476736 \div 7 = 9817066676 \quad \text{(integer part)} \] Calculating the remainder: \[ 68719476736 \mod 7 = 4 \quad \text{(since } 68719476736 = 7 \times 9817066676 + 4\text{)} \] Thus, we have: \[ \frac{2^{36}}{7} = 9817066676 + \frac{4}{7} \] ### Step 6: Find the Fractional Part The fractional part of \(\frac{2^{36}}{7}\) is: \[ \{ \frac{2^{36}}{7} \} = \frac{4}{7} \] ### Final Answer Thus, the answer is: \[ \frac{4}{7} \]

To solve the problem, we need to follow these steps: ### Step 1: Construct the Matrix A Given that \( A = [a_{ij}]_{4 \times 4} \) where: - \( a_{ij} = 2 \) when \( i = j \) (diagonal elements) - \( a_{ij} = 0 \) when \( i \neq j \) (off-diagonal elements) Thus, the matrix \( A \) can be represented as: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(3xx3) be such that a_(ij)=[{:(3, " when",hati=hatj),(0,,hati ne hatj):}" then " {("det (adj(adj A))")/(5)} equals : ( where {.} denotes fractional part function )

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If A=[a_(i j)] is a 2xx2 matrix such that a_(i j)=i+2j , write A .

Let A=[a_(ij)]_(5xx5) is a matrix such that a_(ij)={(3,AA i= j),(0,Aai ne j):} . If |(adj(adjA))/(3)|=(sqrt3)^(lambda), then lambda is equal to (where, adj(M) represents the adjoint matrix of matrix M)

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

CENGAGE ENGLISH-MATRICES-Exercises
  1. If nth-order square matrix A is a orthogonal, then |"adj (adj A)"| is

    Text Solution

    |

  2. Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , t...

    Text Solution

    |

  3. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  4. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  5. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  6. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  7. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  8. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  9. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  10. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  11. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  12. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  13. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  16. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  17. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  18. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  19. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  20. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |