Home
Class 12
MATHS
If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)...

If adj`B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1))` is `P Q` b. `Q A P` c. `P A Q` d. `P A^1Q`

A

`PQ`

B

`QAP`

C

`PAQ`

D

`PA^(-1)Q`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the adjoint of the matrix expression \( Q^{-1} B P^{-1} \) given that \( \text{adj}(B) = A \) and \( |P| = |Q| = 1 \). ### Step-by-step Solution: 1. **Write the expression for the adjoint:** \[ \text{adj}(Q^{-1} B P^{-1}) = \text{adj}(P^{-1}) \cdot \text{adj}(B) \cdot \text{adj}(Q^{-1}) \] 2. **Use the property of adjoint for inverses:** The property states that: \[ \text{adj}(A^{-1}) = \frac{\text{adj}(A)}{|A|} \] Applying this to \( P^{-1} \) and \( Q^{-1} \): \[ \text{adj}(P^{-1}) = \frac{\text{adj}(P)}{|P|} \quad \text{and} \quad \text{adj}(Q^{-1}) = \frac{\text{adj}(Q)}{|Q|} \] 3. **Substituting the determinants:** Since \( |P| = 1 \) and \( |Q| = 1 \), we have: \[ \text{adj}(P^{-1}) = \text{adj}(P) \quad \text{and} \quad \text{adj}(Q^{-1}) = \text{adj}(Q) \] 4. **Substituting the adjoint of B:** We know from the problem statement that \( \text{adj}(B) = A \). Thus, we can substitute: \[ \text{adj}(Q^{-1} B P^{-1}) = \text{adj}(P) \cdot A \cdot \text{adj}(Q) \] 5. **Final expression:** We can write the final expression as: \[ \text{adj}(Q^{-1} B P^{-1}) = P A Q \] ### Conclusion: The answer is \( P A Q \).

To solve the problem, we need to find the adjoint of the matrix expression \( Q^{-1} B P^{-1} \) given that \( \text{adj}(B) = A \) and \( |P| = |Q| = 1 \). ### Step-by-step Solution: 1. **Write the expression for the adjoint:** \[ \text{adj}(Q^{-1} B P^{-1}) = \text{adj}(P^{-1}) \cdot \text{adj}(B) \cdot \text{adj}(Q^{-1}) \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If P is a non-singular matrix, with (P^(-1)) in terms of 'P', then show that adj (Q^(-1) BP^-1) = PAQ . Given that (B) = A and abs(P) = abs(Q) = 1.

If P is an orthogonal matrix and Q=P A P^T an dx=P^T Q^1000 P then x^(-1) is , where A is involutary matrix. A b. I c. A^(1000) d. none of these

In Figure, if quadrilateral P Q R S circumscribes a circle, then P D+Q B= (a) P Q (b) Q R (c) P R (d) P S

If A B C~= P Q R and A B C is not congruent to R P Q , then which of the following not true: (a) B C=P Q (b) A C=P R (c) A B=P Q (d) Q R=B C

If in an A.P., the pth term is q\ a n d\ (p+q)^(t h) term is zero then the q^(t h) term is a. -p b. p c. p+q d. p-q

A B C D is a parallelogram. P is a point on A D such that A P=1/3\ A D\ a n d\ Q is a point on B C such that C Q=1/3B C . Prove that A Q C P is a parallelogram.

In a right triangle A B C right-angled at B , if P a n d Q are points on the sides A Ba n dA C respectively, then (a) A Q^2+C P^2=2(A C^2+P Q^2) (b) 2(A Q^2+C P^2)=A C^2+P Q^2 (c) A Q^2+C P^2=A C^2+P Q^2 (d) A Q+C P=1/2(A C+P Q)dot

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that D P = B Q . Show that: (i) DeltaA P D~= DeltaC Q B (ii) A P = C Q (iii) DeltaA Q B~= DeltaC P D (iv) A Q = C P (v) APCQ is a parallelogram.

If Delta P Q R\ ~= Delta E F D , then /_E= (a) /_P (b) /_Q (c) /_R (d) None of these

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  2. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  3. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  4. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  5. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  9. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  14. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  15. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  16. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  18. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |

  19. If A is a square matric of order 5 and 2A^(-1)=A^(T), then the remaind...

    Text Solution

    |

  20. Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the product PQ has inverse R=[(-1...

    Text Solution

    |