Home
Class 12
MATHS
If A is non-singular and (A-2I)(A-4I)=O ...

If `A` is non-singular and `(A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1)` is equal to `O I` b. `2I` c. `6I` d. `I`

A

`O`

B

`I`

C

`2I`

D

`6I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{6}A + \frac{4}{3}A^{-1} \) given that \( (A - 2I)(A - 4I) = O \) where \( A \) is a non-singular matrix. ### Step-by-step Solution: 1. **Start with the given equation**: \[ (A - 2I)(A - 4I) = O \] 2. **Expand the left-hand side**: \[ A^2 - 4A - 2A + 8I = O \] This simplifies to: \[ A^2 - 6A + 8I = O \] 3. **Rearranging the equation**: \[ A^2 - 6A + 8I = 0 \implies A^2 - 6A = -8I \] 4. **Multiply both sides by \( A^{-1} \)** (since \( A \) is non-singular): \[ A^{-1}(A^2 - 6A) = A^{-1}(-8I) \] This gives us: \[ A + 8A^{-1} = -8A^{-1} \] 5. **Rearranging the equation**: \[ A + 8A^{-1} = 6I \] 6. **Now, isolate \( A \) and \( A^{-1} \)**: \[ A + 8A^{-1} = 6I \implies A = 6I - 8A^{-1} \] 7. **Divide the entire equation by 6**: \[ \frac{1}{6}A + \frac{8}{6}A^{-1} = I \] 8. **Simplify the coefficients**: \[ \frac{1}{6}A + \frac{4}{3}A^{-1} = I \] 9. **Thus, we conclude**: \[ \frac{1}{6}A + \frac{4}{3}A^{-1} = I \] ### Final Answer: The value of \( \frac{1}{6}A + \frac{4}{3}A^{-1} \) is \( I \).

To solve the problem, we need to find the value of \( \frac{1}{6}A + \frac{4}{3}A^{-1} \) given that \( (A - 2I)(A - 4I) = O \) where \( A \) is a non-singular matrix. ### Step-by-step Solution: 1. **Start with the given equation**: \[ (A - 2I)(A - 4I) = O \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

If A is a square matrix such that A^2=A ,t h e n(I+A)^3-7A is equal to (a) A (b) I-A (c) I (d) 3A

If A=[[4, 2],[-1, 1]] , prove that (A-2I)(A-3I)=O .

Suppose A is any 3 × 3 non-singular matrix and (A -3I) (A-5I)=0, where I=I_3 and O=O_3 . If alphaA + betaA^(-1) =4I , then alpha +beta is equal to :

If A^2+A+I=0 , then A is non-singular A!=0 (b) A is singular A^(-1)=-(A+I)

If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1) is equal to a. [[a+i b,-c+i d],[c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If sum_(r=1)^n r^4=I(n),t h e nsum_(r=1)^n(2r-1)^4 is equal to a. I(2n)-I(n) b. I(2n)-16 I(n) c. I(2n)-8I(n) d. I(2n)-4I(n)

If A=([a_(i j)])_(3xx3), such that a_(i j)={2,i=j and 0,i!=j ,t h e n1+(log)_(1//2)(|A|^(|a d jA|)) is equal to a. -191 b. -23 c. 0 d. does not exists

Let A and B are two non - singular matrices of order 3 such that A+B=2I and A^(-1)+B^(-1)=3I , then AB is equal to (where, I is the identity matrix of order 3)

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  2. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  3. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  4. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  5. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  9. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  14. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  15. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  16. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  18. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |

  19. If A is a square matric of order 5 and 2A^(-1)=A^(T), then the remaind...

    Text Solution

    |

  20. Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the product PQ has inverse R=[(-1...

    Text Solution

    |