Home
Class 12
MATHS
If F(x)=[("cos"x,-sin x,0),(sin x,cos x,...

If `F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)]` and `G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)]`, then `[F(x) G(y)]^(-1)` is equal to

A

`F(-x) G(-y)`

B

`G(-y) F(-x)`

C

`F(x^(-1))G(y^(-1))`

D

`G(y^(-1)) F(x^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \([F(x) G(y)]^{-1}\), we can use the property of the inverse of the product of matrices. The property states that \((AB)^{-1} = B^{-1} A^{-1}\). Let's go through the steps to find \([F(x) G(y)]^{-1}\): ### Step 1: Write down the matrices \(F(x)\) and \(G(y)\) Given: \[ F(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ G(y) = \begin{pmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{pmatrix} \] ### Step 2: Find the inverses \(F(x)^{-1}\) and \(G(y)^{-1}\) The inverse of a rotation matrix can be found by taking the transpose of the matrix. Thus: \[ F(x)^{-1} = F(-x) = \begin{pmatrix} \cos(-x) & -\sin(-x) & 0 \\ \sin(-x) & \cos(-x) & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Similarly, for \(G(y)\): \[ G(y)^{-1} = G(-y) = \begin{pmatrix} \cos(-y) & 0 & \sin(-y) \\ 0 & 1 & 0 \\ -\sin(-y) & 0 & \cos(-y) \end{pmatrix} = \begin{pmatrix} \cos y & 0 & -\sin y \\ 0 & 1 & 0 \\ \sin y & 0 & \cos y \end{pmatrix} \] ### Step 3: Use the property of inverses Now, using the property of inverses: \[ [F(x) G(y)]^{-1} = G(y)^{-1} F(x)^{-1} \] ### Step 4: Substitute the inverses Substituting the inverses we found: \[ [F(x) G(y)]^{-1} = G(-y) F(-x) \] \[ = \begin{pmatrix} \cos y & 0 & -\sin y \\ 0 & 1 & 0 \\ \sin y & 0 & \cos y \end{pmatrix} \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Multiply the matrices Now, we perform the matrix multiplication: \[ = \begin{pmatrix} \cos y \cos x + 0 \cdot (-\sin x) + (-\sin y) \cdot 0 & \cos y \sin x + 0 \cdot \cos x + (-\sin y) \cdot 0 & \cos y \cdot 0 + 0 \cdot 0 + (-\sin y) \cdot 1 \\ 0 \cdot \cos x + 1 \cdot (-\sin x) + 0 \cdot 0 & 0 \cdot \sin x + 1 \cdot \cos x + 0 \cdot 0 & 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 \\ \sin y \cdot \cos x + 0 \cdot (-\sin x) + \cos y \cdot 0 & \sin y \cdot \sin x + 0 \cdot \cos x + \cos y \cdot 0 & \sin y \cdot 0 + 0 \cdot 0 + \cos y \cdot 1 \end{pmatrix} \] This simplifies to: \[ = \begin{pmatrix} \cos y \cos x & \cos y \sin x & -\sin y \\ -\sin x & \cos x & 0 \\ \sin y \cos x & \sin y \sin x & \cos y \end{pmatrix} \] ### Final Answer Thus, the final result is: \[ [F(x) G(y)]^{-1} = \begin{pmatrix} \cos y \cos x & \cos y \sin x & -\sin y \\ -\sin x & \cos x & 0 \\ \sin y \cos x & \sin y \sin x & \cos y \end{pmatrix} \]

To find \([F(x) G(y)]^{-1}\), we can use the property of the inverse of the product of matrices. The property states that \((AB)^{-1} = B^{-1} A^{-1}\). Let's go through the steps to find \([F(x) G(y)]^{-1}\): ### Step 1: Write down the matrices \(F(x)\) and \(G(y)\) Given: \[ F(x) = \begin{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

find the value for x F(x)=|[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]|

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

" if " f(0) = |{:(sin 0 ,,cos 0,,sin 0),(cos0,,sin0,,cos0),(cos0,, sin 0,,sin 0):}| then

Given that F(x)=[{:(,cos x,-sin x,0),(,sin x,cos x,0),(,0,0,1):}]."If"in R Then for what values of y, F(x+y)=F(x)F(y)

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to:

If x , y in R , then the determinant = |(cos x , -sin x,1),(sin x, cos x,1),(cos(x+y), -sin(x+y), 0)| lies in the interval (a) [-sqrt(2),sqrt(2)] (b) [-1,1] (c) [-sqrt(2),1] (d) [-1,-sqrt(2)]

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

If y= y(x) ( 2 _ cos x ) /( y+1) (( dy )/(dx)) =- sin x, y (0) =1 then y((pi)/(2)) equal ____.

If y=cos (sin x) , show that (d^2y)/(dx^2)+tan x""(dy)/(dx)+y cos^2 x=0

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  2. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  3. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  4. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  5. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  9. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  14. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  15. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  16. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  18. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |

  19. If A is a square matric of order 5 and 2A^(-1)=A^(T), then the remaind...

    Text Solution

    |

  20. Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the product PQ has inverse R=[(-1...

    Text Solution

    |