Home
Class 12
MATHS
Given that matrix A[(x,3,2),(1,y,4),(2,2...

Given that matrix `A[(x,3,2),(1,y,4),(2,2,z)]`. If `xyz=60` and `8x+4y+3z=20`, then A(adj A) is equal to

A

`[(64,0,0),(0,64,0),(0,0,64)]`

B

`[(88,0,0),(0,88,0),(0,0,88)]`

C

`[(68,0,0),(0,68,0),(0,0,68)]`

D

`[(34,0,0),(0,34,0),(0,0,34)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A \cdot \text{adj}(A) \) for the given matrix \( A \) and the conditions provided. ### Step 1: Define the matrix \( A \) Given the matrix: \[ A = \begin{pmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A \) The determinant of a 3x3 matrix is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = x(yz - 8) - 3(1z - 8) + 2(2y - 2) \] Expanding this gives: \[ \text{det}(A) = xyz - 8x - 3z + 24 + 4y - 4 \] Simplifying further: \[ \text{det}(A) = xyz - 8x + 4y + 20 - 3z \] ### Step 3: Substitute the given values We know from the problem: 1. \( xyz = 60 \) 2. \( 8x + 4y + 3z = 20 \) Substituting \( xyz = 60 \) into the determinant expression: \[ \text{det}(A) = 60 - 8x + 4y - 3z + 20 \] ### Step 4: Rearranging the determinant equation From the second equation, we can express \( 8x + 4y + 3z = 20 \) as: \[ -8x + 4y - 3z = -20 \] Thus, we can substitute this into the determinant: \[ \text{det}(A) = 60 - (-20) = 60 + 20 = 80 \] ### Step 5: Find \( A \cdot \text{adj}(A) \) Using the property: \[ A \cdot \text{adj}(A) = \text{det}(A) \cdot I \] where \( I \) is the identity matrix. Therefore: \[ A \cdot \text{adj}(A) = 80 \cdot I \] This results in: \[ A \cdot \text{adj}(A) = \begin{pmatrix} 80 & 0 & 0 \\ 0 & 80 & 0 \\ 0 & 0 & 80 \end{pmatrix} \] ### Final Answer Thus, \( A \cdot \text{adj}(A) \) is equal to: \[ \begin{pmatrix} 80 & 0 & 0 \\ 0 & 80 & 0 \\ 0 & 0 & 80 \end{pmatrix} \]

To solve the problem, we need to find \( A \cdot \text{adj}(A) \) for the given matrix \( A \) and the conditions provided. ### Step 1: Define the matrix \( A \) Given the matrix: \[ A = \begin{pmatrix} x & 3 & 2 \\ 1 & y & 4 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]] . If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to

Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28 , then (adj A) A equals :

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let A=[{:(x^(2),6,8),(3,y^(2),9),(4,5,z^(2)):}],B=[{:(2x,3,5),(2,2y,6),(1,4,2z-3):}] . If trace A = trace B, then x+y+z is equal to ________

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

Using elementary transformations, find the inverse of the matrix A = [[ 8, 4, 3 ], [ 2, 1, 1 ], [ 1, 2, 2 ]] and use it to solve the following system of linear equations : 8x+4y+3z=19 2x+y+z=5 x+2y+2z=7

Solve x-y+z=4 , x+y+z=2 , 2x+y-3z=0

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  2. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  3. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  4. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  5. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  9. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  14. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  15. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  16. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  18. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |

  19. If A is a square matric of order 5 and 2A^(-1)=A^(T), then the remaind...

    Text Solution

    |

  20. Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the product PQ has inverse R=[(-1...

    Text Solution

    |