Home
Class 12
MATHS
Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the...

Let `P=[(1,2,1),(0,1,-1),(3,1,1)]`. If the product PQ has inverse `R=[(-1,0,1),(1,1,3),(2,0,2)]` then `Q^(-1)` equals

A

`[(3,2,9),(-1,1,1),(0,1,8)]`

B

`[(5,2,9),(-1,1,1),(0,1,7)]`

C

`[(2,-1,0),(10,6,3),(8,6,4)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( Q^{-1} \) given that \( R = (PQ)^{-1} \), we can follow these steps: ### Step 1: Understand the relationship between \( R \), \( P \), and \( Q \) We know from matrix theory that: \[ (PQ)^{-1} = Q^{-1}P^{-1} \] Thus, we can express \( R \) as: \[ R = Q^{-1}P^{-1} \] ### Step 2: Rearrange the equation to find \( Q^{-1} \) Multiplying both sides of the equation by \( P \) gives: \[ RP = Q^{-1} \] This means that to find \( Q^{-1} \), we need to compute the product \( RP \). ### Step 3: Calculate \( P \) Given: \[ P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1 \end{pmatrix} \] ### Step 4: Calculate \( R \) Given: \[ R = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix} \] ### Step 5: Compute the product \( RP \) Now, we will calculate \( RP \): \[ RP = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1 \end{pmatrix} \] Calculating each element of the resulting matrix: 1. First row: - First element: \((-1 \cdot 1) + (0 \cdot 0) + (1 \cdot 3) = -1 + 0 + 3 = 2\) - Second element: \((-1 \cdot 2) + (0 \cdot 1) + (1 \cdot 1) = -2 + 0 + 1 = -1\) - Third element: \((-1 \cdot 1) + (0 \cdot -1) + (1 \cdot 1) = -1 + 0 + 1 = 0\) 2. Second row: - First element: \((1 \cdot 1) + (1 \cdot 0) + (3 \cdot 3) = 1 + 0 + 9 = 10\) - Second element: \((1 \cdot 2) + (1 \cdot 1) + (3 \cdot 1) = 2 + 1 + 3 = 6\) - Third element: \((1 \cdot 1) + (1 \cdot -1) + (3 \cdot 1) = 1 - 1 + 3 = 3\) 3. Third row: - First element: \((2 \cdot 1) + (0 \cdot 0) + (2 \cdot 3) = 2 + 0 + 6 = 8\) - Second element: \((2 \cdot 2) + (0 \cdot 1) + (2 \cdot 1) = 4 + 0 + 2 = 6\) - Third element: \((2 \cdot 1) + (0 \cdot -1) + (2 \cdot 1) = 2 + 0 + 2 = 4\) Thus, the product \( RP \) is: \[ RP = \begin{pmatrix} 2 & -1 & 0 \\ 10 & 6 & 3 \\ 8 & 6 & 4 \end{pmatrix} \] ### Step 6: Conclusion Therefore, we have: \[ Q^{-1} = RP = \begin{pmatrix} 2 & -1 & 0 \\ 10 & 6 & 3 \\ 8 & 6 & 4 \end{pmatrix} \]

To find \( Q^{-1} \) given that \( R = (PQ)^{-1} \), we can follow these steps: ### Step 1: Understand the relationship between \( R \), \( P \), and \( Q \) We know from matrix theory that: \[ (PQ)^{-1} = Q^{-1}P^{-1} \] Thus, we can express \( R \) as: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of [(2, 0,-1),( 5, 1, 0),( 0, 1, 3)]

Given A=[(1,1,1),(2,4,1),(2,3,1)], B=[(2,3),(3,4)]. Find P such that BPA= [(1,0,1),(0,1,0)]

Compute the inverse of the matix A = [{:(0,1,2),(1,2,3),(0,1,2):}]

Let A=[(-1,2,-3),(-2,0,3),(3,-3,1)] be a mstrix, then |A|adj(A^(-1)) is equal to

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(1,-2,3)] . If B is the inverse of A, then alpha is :

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

If A=[(1,1),(0,1)] , show that A^2=[(1, 2),( 0, 1)] and A^3=[(1 ,3 ),(0 ,1)] .

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  2. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  3. If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(...

    Text Solution

    |

  4. If P is an orthogonal matrix and Q=P A P^T an dx=P^T A b. I c. A^(100...

    Text Solution

    |

  5. If A a n d B are two non-singular matrices of the same order such that...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |

  9. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If k in Rot h e ndet{a d j(k In)} is equal to K^(n-1) b. K^(n(n-1)) c...

    Text Solution

    |

  14. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |

  15. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  16. If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that det. (A)=1/3, then the v...

    Text Solution

    |

  18. If A and B are two non-singular matrices of order 3 such that A A^(T)=...

    Text Solution

    |

  19. If A is a square matric of order 5 and 2A^(-1)=A^(T), then the remaind...

    Text Solution

    |

  20. Let P=[(1,2,1),(0,1,-1),(3,1,1)]. If the product PQ has inverse R=[(-1...

    Text Solution

    |