Home
Class 12
MATHS
For each tin R,let[t]be the greatest int...

For each t`in R`,let[t]be the greatest integer less than or equal to t. Then
`lim_(xto1^+)((1-absx+sinabs(1-x))sin(pi/2[1-x]))/(abs(1-x)[1-x])`

A

equals-1

B

equals 1

C

does not exist

D

equals 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 1^+} \frac{(1 - |x| + \sin |1 - x|) \sin\left(\frac{\pi}{2} [1 - x]\right)}{|1 - x| [1 - x]} \] we will follow these steps: ### Step 1: Substitute \( x = 1 + h \) Let \( h \to 0^+ \) as \( x \to 1^+ \). Therefore, we have: \[ 1 - x = 1 - (1 + h) = -h \] ### Step 2: Rewrite the limit in terms of \( h \) Substituting \( x = 1 + h \) into the limit, we get: \[ \lim_{h \to 0^+} \frac{(1 - |1 + h| + \sin |1 - (1 + h)|) \sin\left(\frac{\pi}{2} [1 - (1 + h)]\right)}{|1 - (1 + h)| [1 - (1 + h)]} \] ### Step 3: Simplify the expressions Now we simplify each part: - Since \( |1 + h| = 1 + h \), we have: \[ 1 - |1 + h| = 1 - (1 + h) = -h \] - For \( \sin |1 - (1 + h)| = \sin |-h| = \sin h \). - For \( [1 - (1 + h)] = [ -h] \), since \( h \to 0^+ \), \( -h \) is negative, so \( [ -h] = -1 \). ### Step 4: Substitute back into the limit Now substituting these simplifications back into the limit gives: \[ \lim_{h \to 0^+} \frac{(-h + \sin h) \sin\left(\frac{\pi}{2} \cdot (-1)\right)}{| -h| (-h)} \] ### Step 5: Evaluate \( \sin\left(\frac{\pi}{2} \cdot (-1)\right) \) We know that: \[ \sin\left(-\frac{\pi}{2}\right) = -1 \] ### Step 6: Substitute and simplify the limit Now substituting this back into our limit: \[ \lim_{h \to 0^+} \frac{(-h + \sin h)(-1)}{h(-h)} = \lim_{h \to 0^+} \frac{h - \sin h}{h^2} \] ### Step 7: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( h \to 0 \), we can apply L'Hôpital's Rule: \[ \lim_{h \to 0^+} \frac{1 - \cos h}{2h} \] ### Step 8: Evaluate the limit As \( h \to 0 \), \( \cos h \to 1 \), thus: \[ \lim_{h \to 0^+} \frac{1 - 1}{2h} = \lim_{h \to 0^+} \frac{0}{2h} = 0 \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto1^+) (x([x]+absx)sin[x])/absx is equal to

For each tinR," let "[t] be the greatest integer less than or equal to t. Then lim_(xto0^(+)) x([(1)/(x)]+[(2)/(x)]+...+[(15)/(x)])

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

If [x] denotes the greatest integer less than or equal to x,then the value of lim_(x->1)(1-x+[x-1]+[1-x]) is

For each x in R , let [x] be the greatest integer less than or equal to x, Then, underset( x to 0^(-)) lim ( x ([x] + | x| ) sin [x]) / (|x|) is equal to

6. lim_(xto1)(1-x^2)^(1/log(1-x))

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(1)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).