Home
Class 12
MATHS
let [x] denote the greatest integer less...

let [x] denote the greatest integer less than or equal to x.
Then `lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2`

A

equals `pi`

B

equals 0

C

equals `pi+1`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\tan(\pi \sin^2 x) + (|x| - \sin(x[x]))^2}{x^2}, \] we will analyze the expression step by step. ### Step 1: Analyze the term \(\tan(\pi \sin^2 x)\) As \(x \to 0\), we know that \(\sin x \approx x\). Therefore, \[ \sin^2 x \approx x^2. \] This gives us: \[ \tan(\pi \sin^2 x) \approx \tan(\pi x^2). \] Using the small angle approximation \(\tan y \approx y\) when \(y\) is small, we have: \[ \tan(\pi x^2) \approx \pi x^2. \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto1^+) (x([x]+absx)sin[x])/absx is equal to

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

Let [x] denote the greatest integer less than or equal to x , then int_0^(pi/4) sinx d(x-[x])= (A) 1/2 (B) 1-1/sqrt(2) (C) 1 (D) none of these

If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] denotes the greatest integer less than or equal to x, than lim_(xto0) f(x) is (a) (-1)/2 (b) 1 (c) (pi)/4 (d) Does not exist

For each t in R ,let[t]be the greatest integer less than or equal to t. Then lim_(xto1^+)((1-absx+sinabs(1-x))sin(pi/2[1-x]))/(abs(1-x)[1-x])

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(1)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).