Home
Class 12
MATHS
lim(xto0) (xcot(4x))/(sin^2x cot^2(2x)) ...

`lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x))` is equal to

A

2

B

0

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x \cot(4x)}{\sin^2 x \cot^2(2x)} \), we will follow these steps: ### Step 1: Rewrite cotangent in terms of tangent Recall that \( \cot(x) = \frac{1}{\tan(x)} \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{x \cot(4x)}{\sin^2 x \cot^2(2x)} = \lim_{x \to 0} \frac{x \cdot \frac{1}{\tan(4x)}}{\sin^2 x \cdot \left(\frac{1}{\tan(2x)}\right)^2} \] This simplifies to: \[ \lim_{x \to 0} \frac{x}{\sin^2 x} \cdot \frac{\tan^2(2x)}{\tan(4x)} \] ### Step 2: Use the limit properties We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\tan x}{x} = 1 \] Thus, we can express \( \frac{x}{\sin^2 x} \) as: \[ \frac{x}{\sin^2 x} = \frac{x}{x^2} \cdot \frac{x^2}{\sin^2 x} = \frac{1}{x} \cdot \left(\frac{\sin x}{x}\right)^{-2} \] As \( x \to 0 \), \( \left(\frac{\sin x}{x}\right)^{-2} \to 1 \), hence: \[ \lim_{x \to 0} \frac{x}{\sin^2 x} = \infty \] ### Step 3: Analyze the tangent terms Next, we analyze \( \frac{\tan^2(2x)}{\tan(4x)} \): \[ \lim_{x \to 0} \frac{\tan(2x)}{2x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\tan(4x)}{4x} = 1 \] Thus: \[ \frac{\tan(2x)}{2x} \to 1 \quad \text{and} \quad \frac{\tan(4x)}{4x} \to 1 \] This means: \[ \lim_{x \to 0} \frac{\tan^2(2x)}{\tan(4x)} = \lim_{x \to 0} \frac{(2x)^2}{4x} = \lim_{x \to 0} \frac{4x^2}{4x} = \lim_{x \to 0} x = 0 \] ### Step 4: Combine the limits Now, we combine the limits: \[ \lim_{x \to 0} \frac{x}{\sin^2 x} \cdot \frac{\tan^2(2x)}{\tan(4x)} = \infty \cdot 0 \] This form is indeterminate, so we need to evaluate it more carefully. ### Step 5: Final evaluation We can rewrite the limit as: \[ \lim_{x \to 0} \frac{x \tan^2(2x)}{\sin^2 x \tan(4x)} \] Using the previous limits, we can find: \[ \lim_{x \to 0} \frac{x \cdot 4x^2}{\sin^2 x \cdot 4x} = \lim_{x \to 0} \frac{4x^3}{4x \cdot \sin^2 x} = \lim_{x \to 0} \frac{x^2}{\sin^2 x} \] As \( x \to 0 \), this limit approaches \( 1 \). ### Final Result Thus, we conclude: \[ \lim_{x \to 0} \frac{x \cot(4x)}{\sin^2 x \cot^2(2x)} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

lim_(x-gt0) (xcot4x)/((cot^2 2x)(sin^2 x)) is equal to (A) 1 (B) 2 (C) 4 (D) 6

The value of {:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x)) is equal to

lim_(x→0) (xcot4x)/((cot^2 2x)(sin^2 x)) is equal to (A) 1 (B) 2 (C) 4 (D) 6

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to