Home
Class 12
MATHS
lim(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)...

` lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4))` is

A

4

B

`8sqrt2`

C

8

D

`4sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \frac{\pi}{4}} \frac{\cot^3 x - \tan x}{\cos(x + \frac{\pi}{4})} \), we will follow these steps: ### Step 1: Direct Substitution First, we will substitute \( x = \frac{\pi}{4} \) directly into the limit expression. \[ \cot\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, \[ \cot^3\left(\frac{\pi}{4}\right) - \tan\left(\frac{\pi}{4}\right) = 1^3 - 1 = 0 \] Next, we calculate the denominator: \[ \cos\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] So we have: \[ \frac{0}{0} \] This indicates that we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and the denominator separately. **Numerator:** \[ \frac{d}{dx}(\cot^3 x - \tan x) = 3\cot^2 x \cdot (-\csc^2 x) - \sec^2 x \] This simplifies to: \[ -3\cot^2 x \csc^2 x - \sec^2 x \] **Denominator:** \[ \frac{d}{dx}(\cos(x + \frac{\pi}{4})) = -\sin(x + \frac{\pi}{4}) \] ### Step 3: Rewrite the Limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{4}} \frac{-3\cot^2 x \csc^2 x - \sec^2 x}{-\sin(x + \frac{\pi}{4})} \] ### Step 4: Substitute Again Now we substitute \( x = \frac{\pi}{4} \) again: \[ \cot\left(\frac{\pi}{4}\right) = 1, \quad \csc\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \] Thus, \[ -3(1^2)(\sqrt{2})^2 - (\sqrt{2})^2 = -3 \cdot 2 - 2 = -6 - 2 = -8 \] For the denominator: \[ -\sin\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{2}\right) = -1 \] ### Step 5: Final Calculation Now we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{-8}{-1} = 8 \] Thus, the final answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

Evaluate the following limits : Lim_(x to pi/4) (1- tan x)/(x - pi/4 )

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

Evaluate lim_(xto pi//4) (1-cot^(3)x)/(2-cotx-cot^(3)x).

The value of lim_(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

Evaluate, lim_(xto(pi//6)) (cot^(2)x-3)/("cosec"x-2)

Evaluate : "lim"_(x rarr pi//4) (1- tanx)/(cos 2x)

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is