Home
Class 12
MATHS
lim(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sq...

`lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x))` is equal to

A

`1/(sqrt(2pi))`

B

`sqrtpi/2`

C

`sqrt(2/pi)`

D

`sqrtpi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1)(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xrarr1)(sqrt(1+x)-sqrt(1-x))/(1+x) is equal to

Lt_(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)