Home
Class 12
MATHS
Let f(x) = (x)/(sqrt(a^(2) + x^(2)))- (d...

Let `f(x) = (x)/(sqrt(a^(2) + x^(2)))- (d-x)/(sqrt(b^(2) + (d-x)^(2))), x in R`, where a, b and d are non-zero real constants. Then,

A

f is a decreasing function of x

B

f is neither increasing nor decreasing function of x

C

f' is not a continuous function of x

D

f is an increasing function of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \frac{x}{\sqrt{a^2 + x^2}} - \frac{d - x}{\sqrt{b^2 + (d - x)^2}} \) and determine whether it is increasing or decreasing. ### Step-by-Step Solution: 1. **Define the Function**: \[ f(x) = \frac{x}{\sqrt{a^2 + x^2}} - \frac{d - x}{\sqrt{b^2 + (d - x)^2}} \] 2. **Find the Derivative**: To determine if the function is increasing or decreasing, we need to find the derivative \( f'(x) \). 3. **Use the Quotient Rule**: We will differentiate each term using the quotient rule. The derivative of \( \frac{u}{v} \) is given by \( \frac{u'v - uv'}{v^2} \). - For the first term \( \frac{x}{\sqrt{a^2 + x^2}} \): - Let \( u = x \) and \( v = \sqrt{a^2 + x^2} \). - Then \( u' = 1 \) and \( v' = \frac{x}{\sqrt{a^2 + x^2}} \). - Thus, \[ \frac{d}{dx} \left( \frac{x}{\sqrt{a^2 + x^2}} \right) = \frac{1 \cdot \sqrt{a^2 + x^2} - x \cdot \frac{x}{\sqrt{a^2 + x^2}}}{a^2 + x^2} = \frac{\sqrt{a^2 + x^2} - \frac{x^2}{\sqrt{a^2 + x^2}}}{a^2 + x^2} \] - For the second term \( \frac{d - x}{\sqrt{b^2 + (d - x)^2}} \): - Let \( u = d - x \) and \( v = \sqrt{b^2 + (d - x)^2} \). - Then \( u' = -1 \) and \( v' = \frac{-(d - x)}{\sqrt{b^2 + (d - x)^2}} \). - Thus, \[ \frac{d}{dx} \left( \frac{d - x}{\sqrt{b^2 + (d - x)^2}} \right) = \frac{-1 \cdot \sqrt{b^2 + (d - x)^2} - (d - x) \cdot \frac{-(d - x)}{\sqrt{b^2 + (d - x)^2}}}{b^2 + (d - x)^2} \] 4. **Combine the Derivatives**: Now we combine the derivatives from both terms to find \( f'(x) \). 5. **Simplify the Expression**: After substituting and simplifying, we will find that: \[ f'(x) = \frac{a^2}{(a^2 + x^2)^{3/2}} + \frac{b^2}{(b^2 + (d - x)^2)^{3/2}} \] 6. **Analyze the Sign of the Derivative**: Since both \( a^2 \) and \( b^2 \) are positive constants (as \( a, b, d \) are non-zero), it follows that: \[ f'(x) > 0 \quad \text{for all } x \in \mathbb{R} \] 7. **Conclusion**: Since the derivative \( f'(x) \) is positive for all \( x \), the function \( f(x) \) is increasing for all real numbers \( x \). ### Final Answer: The function \( f(x) \) is increasing for all \( x \in \mathbb{R} \).
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 8|11 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 5|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

Prove that the function f(x) = a sqrt(x - 1) + b sqrt(2x - 1)-sqrt(2x^(2) - 3x + 1) , where a + 2b = 2 and a, b in R always has a root in (1, 5) AA b in R

If f(x)=x/sqrt(a^2+x^2)-((d-x))/sqrt(b^2+(d-x)^2) then (A) f(x) is strictly increasing (B) f(x) is strictly deceasing (C) f\'(x) is constant (D) f(x) is neither increasing nor decreasing

Let f(x)="min"{sqrt(4-x^(2)),sqrt(1+x^(2))}AA,x in [-2, 2] then the number of points where f(x) is non - differentiable is

Differentiate w.r.t 'x' f(x) = (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

Let f (x) =x ^(2) + ax +b and g (x) =x ^(2) +cx+d be two quadratic polynomials with real coefficients and satisfy ac =2 (b+d). Then which of the following is (are) correct ?

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

Let f : D toR bge defined as :f (x) = (x^(2) +2x+a)/(x ^(2)+ 4x+3a) where D and R denote the domain of f and the set of all the real numbers respectively. If f is surjective mapping. Then the complete range of a is :