Home
Class 12
MATHS
solve the equation cot^-1 x + tan^-1 3 =...

solve the equation `cot^-1 x + tan^-1 3 = pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1} x + \tan^{-1} 3 = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cot^{-1} x + \tan^{-1} 3 = \frac{\pi}{2} \] ### Step 2: Isolate \( \cot^{-1} x \) We can isolate \( \cot^{-1} x \) by subtracting \( \tan^{-1} 3 \) from both sides: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} 3 \] ### Step 3: Use the cotangent identity Using the identity that \( \cot^{-1} a + \tan^{-1} a = \frac{\pi}{2} \), we can rewrite the right side: \[ \cot^{-1} x = \cot^{-1} 3 \] ### Step 4: Set the arguments equal Since the cotangent function is one-to-one, we can set the arguments equal to each other: \[ x = 3 \] ### Step 5: Conclusion Thus, the solution to the equation is: \[ \boxed{3} \] ---

To solve the equation \( \cot^{-1} x + \tan^{-1} 3 = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cot^{-1} x + \tan^{-1} 3 = \frac{\pi}{2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

Solve the equation cot x + tan x = 2 cosec x .

Solve the equation : cot x=2 , sin2x=1

How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

Solve the equation : tan x + cot x =2

Solve the equation cos(tan^(-1)x) = sin(cot^(-1)(3/4)) .

solve the equation for the value of x : cot^(-1)(x) + tan^(-1)3 = pi/2

Solve the following equation for x : tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=(2pi)/3,x >0