Home
Class 12
MATHS
Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/...

Solve `2 cos^(-1) x + sin^(-1) x = (2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \cos^{-1} x + \sin^{-1} x = \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \cos^{-1} x + \sin^{-1} x = \frac{2\pi}{3} \] ### Step 2: Use the identity for inverse trigonometric functions We know that: \[ \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \] Using this identity, we can rewrite \( 2 \cos^{-1} x \) as: \[ 2 \cos^{-1} x = \frac{2\pi}{3} - \sin^{-1} x \] This implies: \[ \cos^{-1} x + \cos^{-1} x + \sin^{-1} x = \frac{2\pi}{3} \] ### Step 3: Substitute the identity into the equation Substituting the identity into the equation gives: \[ \cos^{-1} x + \left(\frac{\pi}{2} - \cos^{-1} x\right) = \frac{2\pi}{3} \] This simplifies to: \[ \frac{\pi}{2} + \cos^{-1} x = \frac{2\pi}{3} \] ### Step 4: Isolate \( \cos^{-1} x \) Now, we isolate \( \cos^{-1} x \): \[ \cos^{-1} x = \frac{2\pi}{3} - \frac{\pi}{2} \] To combine these fractions, we find a common denominator: \[ \cos^{-1} x = \frac{4\pi}{6} - \frac{3\pi}{6} = \frac{\pi}{6} \] ### Step 5: Solve for \( x \) Now we take the cosine of both sides: \[ x = \cos\left(\frac{\pi}{6}\right) \] We know that: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Thus, we have: \[ x = \frac{\sqrt{3}}{2} \] ### Final Answer The solution to the equation \( 2 \cos^{-1} x + \sin^{-1} x = \frac{2\pi}{3} \) is: \[ \boxed{\frac{\sqrt{3}}{2}} \]

To solve the equation \( 2 \cos^{-1} x + \sin^{-1} x = \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \cos^{-1} x + \sin^{-1} x = \frac{2\pi}{3} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]