Home
Class 12
MATHS
If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 ...

If `(tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 pi^2) /8` find x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}\), we will follow these steps: ### Step 1: Use the identity for \(\cot^{-1} x\) We know that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into the equation, we have: \[ (\tan^{-1} x)^2 + \left(\frac{\pi}{2} - \tan^{-1} x\right)^2 = \frac{5\pi^2}{8} \] ### Step 2: Expand the equation Expanding the squared term: \[ (\tan^{-1} x)^2 + \left(\frac{\pi^2}{4} - \pi \tan^{-1} x + (\tan^{-1} x)^2\right) = \frac{5\pi^2}{8} \] This simplifies to: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x + \frac{\pi^2}{4} = \frac{5\pi^2}{8} \] ### Step 3: Rearranging the equation Now, let's rearrange the equation: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x + \frac{\pi^2}{4} - \frac{5\pi^2}{8} = 0 \] To combine the constants, we convert \(\frac{\pi^2}{4}\) to have a common denominator: \[ \frac{\pi^2}{4} = \frac{2\pi^2}{8} \] Thus, the equation becomes: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x + \left(\frac{2\pi^2}{8} - \frac{5\pi^2}{8}\right) = 0 \] This simplifies to: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x - \frac{3\pi^2}{8} = 0 \] ### Step 4: Let \(y = \tan^{-1} x\) Let \(y = \tan^{-1} x\). The equation then becomes: \[ 2y^2 - \pi y - \frac{3\pi^2}{8} = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): - Here, \(a = 2\), \(b = -\pi\), and \(c = -\frac{3\pi^2}{8}\). \[ y = \frac{\pi \pm \sqrt{(-\pi)^2 - 4 \cdot 2 \cdot \left(-\frac{3\pi^2}{8}\right)}}{2 \cdot 2} \] Calculating the discriminant: \[ b^2 - 4ac = \pi^2 + 6\pi^2 = 7\pi^2 \] Thus: \[ y = \frac{\pi \pm \sqrt{7\pi^2}}{4} = \frac{\pi \pm \sqrt{7}\pi}{4} = \frac{\pi(1 \pm \sqrt{7})}{4} \] ### Step 6: Determine valid solutions for \(y\) Since \(y = \tan^{-1} x\) must be in the range \(-\frac{\pi}{2} < y < \frac{\pi}{2}\), we check the two possible values: 1. \(y = \frac{\pi(1 + \sqrt{7})}{4}\) (this is greater than \(\frac{\pi}{2}\) and not valid) 2. \(y = \frac{\pi(1 - \sqrt{7})}{4}\) (this is negative and valid) ### Step 7: Find \(x\) Now, we find \(x\): \[ x = \tan\left(\frac{\pi(1 - \sqrt{7})}{4}\right) \] ### Conclusion Thus, the value of \(x\) is: \[ x = \tan\left(\frac{\pi(1 - \sqrt{7})}{4}\right) \]

To solve the equation \((\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}\), we will follow these steps: ### Step 1: Use the identity for \(\cot^{-1} x\) We know that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into the equation, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

If tan^(-1)x+2cot^(-1)x=(5pi)/6 , then find x.

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) , find ((dy)/(dx)])_(x=-1) 0 (b) 1 (c) 2//pi (d) -1

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

Solve: 5tan^(-1)x+3cot^(-1)x=2pi