Home
Class 12
MATHS
If alpha in (-(pi)/(2), 0), then find th...

If `alpha in (-(pi)/(2), 0)`, then find the value of `tan^(-1) (cot alpha) - cot^(-1) (tan alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) \) given that \( \alpha \in \left(-\frac{\pi}{2}, 0\right) \). ### Step-by-Step Solution: 1. **Express cotangent in terms of tangent:** \[ \cot \alpha = \frac{1}{\tan \alpha} \] Therefore, we can rewrite the expression as: \[ \tan^{-1}(\cot \alpha) = \tan^{-1}\left(\frac{1}{\tan \alpha}\right) \] 2. **Use the identity for the inverse tangent:** We know that: \[ \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} - \tan^{-1}(x) \quad \text{for } x > 0 \] However, since \( \tan \alpha < 0 \) in the interval \( \left(-\frac{\pi}{2}, 0\right) \), we need to adjust this identity: \[ \tan^{-1}\left(\frac{1}{\tan \alpha}\right) = -\frac{\pi}{2} + \cot^{-1}(\tan \alpha) \] 3. **Substituting back into the expression:** Now substituting this back into our original expression: \[ \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) = \left(-\frac{\pi}{2} + \cot^{-1}(\tan \alpha)\right) - \cot^{-1}(\tan \alpha) \] 4. **Simplifying the expression:** The \( \cot^{-1}(\tan \alpha) \) terms cancel out: \[ = -\frac{\pi}{2} \] 5. **Final Result:** Therefore, the value of \( \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) \) is: \[ \boxed{-\frac{\pi}{2}} \]

To solve the problem, we need to find the value of \( \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) \) given that \( \alpha \in \left(-\frac{\pi}{2}, 0\right) \). ### Step-by-Step Solution: 1. **Express cotangent in terms of tangent:** \[ \cot \alpha = \frac{1}{\tan \alpha} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(cosalpha) is equal to (a) 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If alpha and beta are the roots of the equation x^2 + 5x-49=0 , then find the value of cot(cot^-1 alpha + cot^-1 beta) .

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to