Home
Class 12
MATHS
If x gt y gt 0, then find the value of t...

If `x gt y gt 0`, then find the value of `tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) \] Given that \(x > y > 0\). ### Step 1: Use the formula for the sum of inverse tangents We will use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \quad \text{if } ab < 1 \] In our case, let: - \(a = \frac{x}{y}\) - \(b = \frac{x+y}{x-y}\) ### Step 2: Calculate \(ab\) First, we need to check the product \(ab\): \[ ab = \frac{x}{y} \cdot \frac{x+y}{x-y} = \frac{x(x+y)}{y(x-y)} \] ### Step 3: Check the condition \(ab < 1\) Since \(x > y > 0\), we can simplify \(ab\): \[ ab = \frac{x^2 + xy}{xy - y^2} \] Now, we need to determine if this is less than 1. We will proceed with the calculation assuming \(ab < 1\) holds true. ### Step 4: Apply the sum formula Now, we can apply the sum formula: \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) = \tan^{-1}\left(\frac{\frac{x}{y} + \frac{x+y}{x-y}}{1 - \frac{x}{y} \cdot \frac{x+y}{x-y}}\right) \] ### Step 5: Simplify the numerator Calculating the numerator: \[ \frac{x}{y} + \frac{x+y}{x-y} = \frac{x(x-y) + y(x+y)}{y(x-y)} = \frac{(x^2 - xy) + (xy + y^2)}{y(x-y)} = \frac{x^2 + y^2}{y(x-y)} \] ### Step 6: Simplify the denominator Now for the denominator: \[ 1 - ab = 1 - \frac{x^2 + xy}{xy - y^2} = \frac{(xy - y^2) - (x^2 + xy)}{xy - y^2} = \frac{-x^2 + y^2}{xy - y^2} \] ### Step 7: Combine the results Now we can combine the results: \[ \tan^{-1}\left(\frac{\frac{x^2 + y^2}{y(x-y)}}{\frac{-x^2 + y^2}{xy - y^2}}\right) = \tan^{-1}\left(\frac{(x^2 + y^2)(xy - y^2)}{y(x-y)(-x^2 + y^2)}\right) \] ### Step 8: Final simplification After simplifying, we will find that: \[ \tan^{-1}\left(-1\right) = -\frac{\pi}{4} \] ### Step 9: Add \(\pi\) Since we used the sum formula, we need to add \(\pi\): \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Final Answer Thus, the value of the expression is: \[ \frac{3\pi}{4} \]

To solve the problem, we need to find the value of the expression: \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) \] Given that \(x > y > 0\). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

If x^(2)-7y=8, x-y=1 , and y gt 0 , what is the value of y ?

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

If tan(x+y)=33 , and x= tan^(-1)3 , then: y=