Home
Class 12
MATHS
Prove that tan^(-1).(1)/(sqrt2) + sin^(-...

Prove that `tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))`

Text Solution

AI Generated Solution

To prove the equation \[ \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) - \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) = -\pi + \cot^{-1}\left(\frac{1 + \sqrt{2}}{1 - \sqrt{2}}\right), \] we will convert \(\sin^{-1}\) and \(\cos^{-1}\) into terms of \(\tan^{-1}\) and then simplify the left-hand side. ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that tan ^(-1) ""(1)/(4) + tan ^(-1) ""(2)/(9) = cos ^(-1) ((2)/(sqrt5))

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

Prove that : 2 "tan"^(-1)1/(2)+"tan"^(-1)1/(7)="sin"^(-1)31/(25sqrt(2)) .