Home
Class 12
MATHS
The number of real values of x satisfyin...

The number of real values of x satisfying `tan^-1(x/(1-x^2))+tan^-1 (1/x^3)` =(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x}{1-x^2}\right) + \tan^{-1}\left(\frac{1}{x^3}\right) = \frac{3\pi}{4}, \] we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] provided that \(ab < 1\). ### Step 1: Identify \(a\) and \(b\) Let \[ a = \frac{x}{1-x^2} \quad \text{and} \quad b = \frac{1}{x^3}. \] ### Step 2: Apply the sum formula Using the formula, we can rewrite the left-hand side: \[ \tan^{-1}\left(\frac{x}{1-x^2}\right) + \tan^{-1}\left(\frac{1}{x^3}\right) = \tan^{-1}\left(\frac{\frac{x}{1-x^2} + \frac{1}{x^3}}{1 - \frac{x}{1-x^2} \cdot \frac{1}{x^3}}\right). \] ### Step 3: Simplify the numerator The numerator becomes: \[ \frac{x}{1-x^2} + \frac{1}{x^3} = \frac{x^4 + 1 - x^2}{x^3(1-x^2)} = \frac{x^4 - x^2 + 1}{x^3(1-x^2)}. \] ### Step 4: Simplify the denominator The denominator simplifies to: \[ 1 - \frac{x}{1-x^2} \cdot \frac{1}{x^3} = 1 - \frac{1}{x^2(1-x^2)} = \frac{x^2(1-x^2) - 1}{x^2(1-x^2)} = \frac{x^2 - x^4 - 1}{x^2(1-x^2)}. \] ### Step 5: Combine the results Putting it all together, we have: \[ \tan^{-1}\left(\frac{x^4 - x^2 + 1}{x^2 - x^4 - 1}\right) = \frac{3\pi}{4}. \] ### Step 6: Set the argument equal to \(-1\) Since \(\tan\left(\frac{3\pi}{4}\right) = -1\), we set the argument equal to \(-1\): \[ \frac{x^4 - x^2 + 1}{x^2 - x^4 - 1} = -1. \] ### Step 7: Cross-multiply and simplify Cross-multiplying gives: \[ x^4 - x^2 + 1 = - (x^2 - x^4 - 1). \] This simplifies to: \[ x^4 - x^2 + 1 = -x^2 + x^4 + 1. \] ### Step 8: Solve for \(x\) This simplifies to: \[ 0 = 0, \] which is always true. However, we must consider the restrictions from the original equation. ### Step 9: Check for restrictions From the original equation, we have: 1. \(1 - x^2 \neq 0 \Rightarrow x \neq \pm 1\). 2. \(x^3 \neq 0 \Rightarrow x \neq 0\). ### Conclusion Since the equation holds for all \(x\) except \(x = 1\), \(x = -1\), and \(x = 0\), we conclude that there are no real solutions that satisfy the original equation. ### Final Answer Thus, the number of real values of \(x\) satisfying the equation is: **No solution.** ---

To solve the equation \[ \tan^{-1}\left(\frac{x}{1-x^2}\right) + \tan^{-1}\left(\frac{1}{x^3}\right) = \frac{3\pi}{4}, \] we can use the formula for the sum of inverse tangents: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5) may be

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

The value of x that satisfies tan^(-1)(tan -3)=tan^(2)x is

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4