Home
Class 12
MATHS
Write the following function in the simp...

Write the following function in the simplest form: `tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)), a >0;(-a)/(sqrt(3))lt=xlt=a/(sqrt(3))`

Text Solution

AI Generated Solution

To simplify the function \( \tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) \), we will follow these steps: ### Step 1: Substitute \( x = a \tan \theta \) Let \( x = a \tan \theta \). This substitution helps simplify the expression since it relates \( x \) to the tangent function. ### Step 2: Substitute into the function ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Write the following functions in the simplest form: tan^(-1){x/(sqrt(a^2-x^2))}

Write the following function in the simplest form: tan^(-1)x/(sqrt(a^2-x^2)) , |x|lta

Write the following function in the simplest form: tan^(-1)((sqrt(1+x^2)-1)/x ), x!=0

Differentiate the following functions with respect to x : tan^(-1)((3a^2x-x^3)/(a^3-3a x^2))

Differentiate the following functions with respect to x : tan^(-1)((3a^2x-x^3)/(a^3-3a x^2))

Write the following function in the simplest form: tan^(-1)(1/(sqrt(x^2-1))),|x|>1

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))