Home
Class 12
MATHS
Solve the equation 2 tan^(-1) (cos x) = ...

Solve the equation `2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x) \), we can follow these steps: ### Step 1: Use the double angle formula for inverse tangent We know that: \[ 2 \tan^{-1}(y) = \tan^{-1}\left(\frac{2y}{1 - y^2}\right) \] Applying this to our equation: \[ 2 \tan^{-1}(\cos x) = \tan^{-1}\left(\frac{2 \cos x}{1 - \cos^2 x}\right) \] Since \(1 - \cos^2 x = \sin^2 x\), we can rewrite this as: \[ 2 \tan^{-1}(\cos x) = \tan^{-1}\left(\frac{2 \cos x}{\sin^2 x}\right) \] ### Step 2: Set the two sides equal Now we have: \[ \tan^{-1}\left(\frac{2 \cos x}{\sin^2 x}\right) = \tan^{-1}(2 \csc x) \] ### Step 3: Remove the inverse tangent Since the tangent function is one-to-one, we can equate the arguments: \[ \frac{2 \cos x}{\sin^2 x} = 2 \csc x \] ### Step 4: Rewrite cosecant in terms of sine Recall that \(\csc x = \frac{1}{\sin x}\), so we can rewrite the equation: \[ \frac{2 \cos x}{\sin^2 x} = \frac{2}{\sin x} \] ### Step 5: Cross-multiply to eliminate the fractions Cross-multiplying gives: \[ 2 \cos x \cdot \sin x = 2 \sin^2 x \] ### Step 6: Simplify the equation Dividing both sides by 2 (assuming \(2 \neq 0\)): \[ \cos x \cdot \sin x = \sin^2 x \] ### Step 7: Rearranging the equation We can rearrange this to: \[ \cos x \cdot \sin x - \sin^2 x = 0 \] Factoring out \(\sin x\): \[ \sin x (\cos x - \sin x) = 0 \] ### Step 8: Solve for \(x\) This gives us two cases: 1. \(\sin x = 0\) 2. \(\cos x - \sin x = 0\) **Case 1:** \(\sin x = 0\) - This occurs at \(x = n\pi\), where \(n\) is any integer. **Case 2:** \(\cos x = \sin x\) - This occurs at \(x = \frac{\pi}{4} + n\pi\), where \(n\) is any integer. ### Final Solution Thus, the solutions to the equation \(2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)\) are: \[ x = n\pi \quad \text{and} \quad x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \]

To solve the equation \( 2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x) \), we can follow these steps: ### Step 1: Use the double angle formula for inverse tangent We know that: \[ 2 \tan^{-1}(y) = \tan^{-1}\left(\frac{2y}{1 - y^2}\right) \] Applying this to our equation: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equations. 2tan^(-1)(cosx)=tan^(-1)(2cose c x)

Solve the equations. 2tan^(-1)(cosx)=tan^(-1)(2cose c x)

solve equation 2 tan^(-1)(cosx)=tan^(-1)(2cosecx)

Solve the equation : 2 tan^(-1) ( 2x - 1) = cos ^(-1) x .

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation : tan x + cot x =2

Let x_(1) " and " x_(2) ( x_(1) gt x_(2)) be roots of the equation sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 , then

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve for x : 2tan^(-1)(cosx)=tan^(-1)(2cos e cx)