Home
Class 12
MATHS
Solve the equations.tan^(-1)((1-x)/(1+x)...

Solve the equations.`tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1}(x) \) for \( x > 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1}(x) \] ### Step 2: Use the double angle formula for tangent We know that: \[ 2 \tan^{-1}(y) = \tan^{-1}\left(\frac{2y}{1-y^2}\right) \] Applying this to the right side, we can rewrite: \[ \tan^{-1}\left(\frac{1-x}{1+x}\right) = \tan^{-1}\left(\frac{x}{2}\right) \] ### Step 3: Set the arguments equal Since the tangent function is one-to-one in the range of the inverse tangent, we can equate the arguments: \[ \frac{1-x}{1+x} = \frac{x}{2} \] ### Step 4: Cross-multiply to eliminate the fractions Cross-multiplying gives us: \[ 2(1-x) = x(1+x) \] ### Step 5: Expand both sides Expanding both sides results in: \[ 2 - 2x = x + x^2 \] ### Step 6: Rearrange the equation Rearranging the equation gives: \[ x^2 + 3x - 2 = 0 \] ### Step 7: Factor the quadratic equation We can factor the quadratic: \[ (x + 2)(x - 1) = 0 \] ### Step 8: Solve for \( x \) Setting each factor to zero gives us: \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \quad (\text{not valid since } x > 0) \] \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] ### Step 9: Verify the solution Since \( x = 1 \) is greater than 0, it is a valid solution. ### Final Answer Thus, the solution to the equation is: \[ \boxed{1} \]

To solve the equation \( \tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1}(x) \) for \( x > 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equation: "tan"^(-1) (1-x)/(1+x)= (1)/(2) tan^(-1)x

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

Solve the equations. 2tan^(-1)(cosx)=tan^(-1)(2cose c x)

Solve the equations. 2tan^(-1)(cosx)=tan^(-1)(2cose c x)

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Solve for x: tan^-1((1-x)/(1+x))=1/2 tan^-1 x, x > 0