Home
Class 12
MATHS
If x + y + z = xyz and x, y, z gt 0, the...

If `x + y + z = xyz and x, y, z gt 0`, then find the value of `tan^(-1) x + tan^(-1) y + tan^(-1) z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + y + z = xyz \) and \( x, y, z > 0 \), we need to find the value of \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + y + z = xyz \] 2. **Rearrange the equation**: We can rearrange the equation to express \( z \): \[ z = \frac{x + y}{xy - 1} \] (This step is derived from rearranging the original equation.) 3. **Apply the tangent addition formula**: We know that: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) \] if \( xy < 1 \). 4. **Consider the case when \( xy < 1 \)**: In this case, we can write: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) \] Now, we can add \( \tan^{-1} z \): \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) + \tan^{-1} z \] 5. **Use the tangent addition formula again**: Using the formula again: \[ \tan^{-1} \left( \frac{a + b}{1 - ab} \right) + \tan^{-1} c = \tan^{-1} \left( \frac{\frac{x + y}{1 - xy} + z}{1 - \frac{x + y}{1 - xy} \cdot z} \right) \] Substitute \( z = \frac{x + y}{xy - 1} \): \[ \tan^{-1} \left( \frac{x + y + z(1 - xy)}{1 - z \cdot \frac{x + y}{1 - xy}} \right) \] 6. **Simplify the expression**: After substituting and simplifying, we find: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \] 7. **Conclusion**: Therefore, the value of \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \) is: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \]

To solve the problem where \( x + y + z = xyz \) and \( x, y, z > 0 \), we need to find the value of \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + y + z = xyz \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x gt y gt 0 , then find the value of tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)