Home
Class 12
MATHS
If alpha and beta (alpha gt beta) are th...

If `alpha and beta (alpha gt beta)` are the roots of `x^(2) + kx - 1 =0`, then find the value of `tan^(-1) alpha - tan^(-1) beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1} \alpha - \tan^{-1} \beta \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 + kx - 1 = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots \( \alpha \) and \( \beta \) of the quadratic equation \( x^2 + kx - 1 = 0 \) can be found using the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = k \), and \( c = -1 \). Thus, the roots are: \[ \alpha, \beta = \frac{-k \pm \sqrt{k^2 + 4}}{2} \] 2. **Calculate \( \alpha \beta \)**: From Vieta's formulas, we know: \[ \alpha \beta = c/a = -1 \] 3. **Use the Formula for \( \tan^{-1} \)**: We can use the identity for the difference of inverse tangents: \[ \tan^{-1} \alpha - \tan^{-1} \beta = \tan^{-1} \left( \frac{\alpha - \beta}{1 + \alpha \beta} \right) \] 4. **Substitute \( \alpha \beta \)**: Since \( \alpha \beta = -1 \), we can substitute this into the formula: \[ \tan^{-1} \alpha - \tan^{-1} \beta = \tan^{-1} \left( \frac{\alpha - \beta}{1 - 1} \right) \] This leads to a division by zero, which indicates that the expression tends towards infinity. 5. **Conclusion**: Since \( \tan^{-1} \left( \frac{\alpha - \beta}{0} \right) \) approaches infinity, we conclude: \[ \tan^{-1} \alpha - \tan^{-1} \beta = \frac{\pi}{2} \] ### Final Answer: \[ \tan^{-1} \alpha - \tan^{-1} \beta = \frac{\pi}{2} \]

To solve the problem, we need to find the value of \( \tan^{-1} \alpha - \tan^{-1} \beta \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 + kx - 1 = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots \( \alpha \) and \( \beta \) of the quadratic equation \( x^2 + kx - 1 = 0 \) can be found using the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos