Home
Class 12
MATHS
Find the sum cot^(-1) 2 + cot^(-1) 8 + c...

Find the sum `cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \ldots \) up to infinity, we can follow these steps: ### Step 1: Identify the Pattern The terms can be rewritten in a more general form. Notice that the terms can be expressed as: \[ \cot^{-1}(2n^2) \quad \text{for } n = 1, 2, 3, \ldots \] This gives us the series: \[ \sum_{n=1}^{\infty} \cot^{-1}(2n^2) \] ### Step 2: Use the Identity for Cotangent Inverse We can use the identity: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Thus, we can rewrite our sum as: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{2n^2}\right) \] ### Step 3: Apply the Addition Formula for Tangent Inverse We can use the formula for the difference of two tangent inverses: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right) \] We can express \( \tan^{-1}\left(\frac{1}{2n^2}\right) \) in terms of a telescoping series: \[ \tan^{-1}(2n+1) - \tan^{-1}(2n-1) \] ### Step 4: Rewrite the Series Thus, we can rewrite our sum: \[ \sum_{n=1}^{\infty} \left( \tan^{-1}(2n+1) - \tan^{-1}(2n-1) \right) \] ### Step 5: Observe the Telescoping Nature This series is telescoping, meaning that most terms will cancel out: \[ \left( \tan^{-1}(3) - \tan^{-1}(1) \right) + \left( \tan^{-1}(5) - \tan^{-1}(3) \right) + \left( \tan^{-1}(7) - \tan^{-1}(5) \right) + \ldots \] After cancellation, we are left with: \[ \lim_{n \to \infty} \tan^{-1}(2n+1) - \tan^{-1}(1) \] ### Step 6: Evaluate the Limit As \( n \to \infty \), \( \tan^{-1}(2n+1) \) approaches \( \frac{\pi}{2} \): \[ \lim_{n \to \infty} \tan^{-1}(2n+1) = \frac{\pi}{2} \] Thus, the sum becomes: \[ \frac{\pi}{2} - \tan^{-1}(1) = \frac{\pi}{2} - \frac{\pi}{4} \] ### Step 7: Final Result Calculating this gives: \[ \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] Therefore, the sum \( \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \ldots \) converges to: \[ \boxed{\frac{\pi}{4}} \]

To find the sum \( \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \ldots \) up to infinity, we can follow these steps: ### Step 1: Identify the Pattern The terms can be rewritten in a more general form. Notice that the terms can be expressed as: \[ \cot^{-1}(2n^2) \quad \text{for } n = 1, 2, 3, \ldots \] This gives us the series: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If the mapping f(x) = mx + c, m gt 0 maps [-1,1] onto [0,2] , then tan ( tan^(-1). 1/7 + cot ^(-1) 8 + cot ^(-1) 18) is equal to

Find the range of y = (cot^(-1) x) (cot^(-1) (-x))

find the value of tan^(-1){cot(-1/4)}

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the set of values of cot^(-1)(1) and cot^(-1)(-1)

If A = 1/1 cot ^(-1) (1/1) + 1/2 cot^(-1) (1/2) + 1/3 cot ^(-1) ( 1/3) " and " B = 1 cot^(-1) ( 1) + 2 cot^(-1) (2) + 3 cot^(-1) (3) " then " |B - A| " is equal to " (api)/b + c/d cot ^(-1) (3) where a,b,c,d in N are in their lowest form , find ( b -a - c - d)

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3