Home
Class 12
MATHS
Prove that sum(r=1)^(n) tan^(-1) ((2^(r...

Prove that `sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)`

Text Solution

AI Generated Solution

To prove that \[ \sum_{r=1}^{n} \tan^{-1} \left( \frac{2^{r-1}}{1 + 2^{2r-1}} \right) = \tan^{-1} (2^n) - \frac{\pi}{4}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r = 1)^n r^3 ((n_C_r)/(C_(r - 1)))^2 = (n (n + 1)^2 (n+2))/(12)

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Deduce that: sum_(r=0)^n .^nC_r (-1)^r 1/((r+1)(r+2)) = 1/(n+2)

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .