Home
Class 12
MATHS
If Pn is the sum of a GdotPdot upto n te...

If `P_n` is the sum of a `GdotPdot` upto `n` terms `(ngeq3),` then prove that `(1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1),` where `r` is the common ratio of `GdotPdot`

Text Solution

Verified by Experts

Let the first term of G.P. be `alpha`. Then
`P_(n)=alpha[(1-r^(n))/(1-r)]`
`(dp_(n))/(dr)=alpha[((1-r)(-nr^(n-1))+(1-r^(n)))/((1-r^())^(2))]`
`therefore" "(1-r)(dP_(n))/(dr)=alpha((-nr^(n-1)+nr^(n))/(1-r))+((1-r^(n))/(1-r))alpha`
`=alphan.((1.r^(n-1)-1+r^(n))/(1-r))+P_(n)`
`=ncdotP_(n-1)-nP_(n)+P_(n)`
`=(1-n)P_(n)+nP_(n-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Prove that P(n,r) = (n- r+1) P(n,r-1)

Prove that P(n,n) = P(n,n-1)

Prove that .^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that ^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that: (i) (.^(n)P_(r))/(.^(n)P_(r-2)) = (n-r+1) (n-r+2)

If P(n) is the statement 2^ngeq3n , and if P(r) is true, prove that P(r+1) is true.

If r le s le n , then prove that .^(n)P_(s) is divisible by .^(n)P_(r) .

If S is the sum, P the product and R the sum of the reciprocals of n terms in G.P., prove that P^(2)= ((S)/(R))^(n) .

If the sum of n terms of a G.P. is 3-(3^(n+1))/(4^(2n)) , then find the common ratio.

If the sum of n terms of a G.P. is 3(3^(n+1))/(4^(2n)) , then find the common ratio.

CENGAGE ENGLISH-DIFFERENTIATION-Solved Examples
  1. Given that cos(x/2).cos(x/4).cos(x/8)..... = sinx/x Prove that (1/...

    Text Solution

    |

  2. If y=f(a^x)a n df^(prime)(sinx)=(log)e x ,t h e n find (dy)/(dx), if i...

    Text Solution

    |

  3. If Pn is the sum of a GdotPdot upto n terms (ngeq3), then prove that (...

    Text Solution

    |

  4. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  5. If x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta, then show ...

    Text Solution

    |

  6. If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1, then prove...

    Text Solution

    |

  7. Find the differential equation of the family of curves y=A e^(2x)+B e^...

    Text Solution

    |

  8. If y=(1/2)^(n-1)cos(ncos^(-1)x), then prove that y satisfies the diffe...

    Text Solution

    |

  9. Let f(x)a n dg(x) be two function having finite nonzero third-order de...

    Text Solution

    |

  10. If a curve is represented parametrically by the equation x=f(t) and y=...

    Text Solution

    |

  11. If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2,...

    Text Solution

    |

  12. If f(xy)=(f(x))/y+(f(y))/x holds for all real x and y greater than 0 a...

    Text Solution

    |

  13. If |a1sinx+a2sin2x++ansinn x|lt=|sinx| for x in R , then prove that |...

    Text Solution

    |

  14. Suppose p(x)=a0+a1x+a2x^2++an x^ndot If |p(x)|lt=e^(x-1)-1| for all xg...

    Text Solution

    |

  15. If f(x)=log(x) (log x)," then find "f'(x) at x= e

    Text Solution

    |

  16. Given that cosx/2.cosx/4.cosx/8....=sinx/x Then find the sum 1/2^2sec^...

    Text Solution

    |

  17. If y=f(a^x)a n df^(prime)(sinx)=(log)e x ,t h e nfin d(dy)/(dx), if it...

    Text Solution

    |

  18. If Pn is the sum of a GdotPdot upto n terms (ngeq3), then prove that (...

    Text Solution

    |

  19. If x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta, then show ...

    Text Solution

    |

  20. If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1, then prove...

    Text Solution

    |