Home
Class 11
MATHS
Volume of parallelpiped formed by vector...

Volume of parallelpiped formed by vectors `veca xx vecb, vecb xx vecc and vecc xx veca ` is 36 sq. units.

Text Solution

Verified by Experts

The correct Answer is:
`a to r ; b to s ; c to q ; d to p`

`[veca xx vecb vecb xx vecc vecc xx veca]=36`
`or [veca vecb vecc]=6`
` Rightarrow` volume of terthedron formed by vectors.
`veca,vecb and vecc is 1/6 [ veca vecb vecc] =1`
`[veca +vecb vecb +vecc vecc +veca] =2 [veca vecb vecc] =12`
`veca-vecb,vecb-vecc and vecc-veca` are coplanar,
`Rightarrow [veca-vecb vecb -veccvecc-veca]=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If the volume of the parallelepiped formed by the vectors veca xx vecb, vecb xx vecc and vecc xx veca is 36 cubic units, then the volume (in cubic units) of the tetrahedron formed by the vectors veca+vecb, vecb+vecc and vecc + veca is equal to

The volume of a tetrahedron determined by the vectors veca, vecb, vecc is (3)/(4) cubic units. The volume (in cubic units) of a tetrahedron determined by the vectors 3(veca xx vecb), 4(vecbxxc) and 5(vecc xx veca) will be

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is