Home
Class 12
MATHS
Evaluate: int(1+2x+3x^2+4x^3+)dx ,(<|x|<...

Evaluate: `int(1+2x+3x^2+4x^3+)dx ,(<|x|<1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int (1 + 2x + 3x^2 + 4x^3 + \ldots) \, dx \quad \text{for } |x| < 1, \] we start by recognizing that the series \(1 + 2x + 3x^2 + 4x^3 + \ldots\) can be expressed as a function. ### Step 1: Identify the series The series can be identified as the power series for the function: \[ \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2} \quad \text{for } |x| < 1. \] Thus, we have: \[ 1 + 2x + 3x^2 + 4x^3 + \ldots = \frac{1}{(1-x)^2}. \] ### Step 2: Rewrite the integral Now we can rewrite the integral as: \[ \int (1 + 2x + 3x^2 + 4x^3 + \ldots) \, dx = \int \frac{1}{(1-x)^2} \, dx. \] ### Step 3: Integrate the function To integrate \(\frac{1}{(1-x)^2}\), we can use the substitution \(u = 1 - x\), which gives us \(du = -dx\). Thus, the integral becomes: \[ \int \frac{1}{u^2} (-du) = -\int u^{-2} \, du. \] ### Step 4: Solve the integral The integral of \(u^{-2}\) is: \[ -\int u^{-2} \, du = -\left(-\frac{1}{u}\right) + C = \frac{1}{u} + C. \] Substituting back for \(u\): \[ \frac{1}{1-x} + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int (1 + 2x + 3x^2 + 4x^3 + \ldots) \, dx = \frac{1}{1-x} + C. \]

To evaluate the integral \[ \int (1 + 2x + 3x^2 + 4x^3 + \ldots) \, dx \quad \text{for } |x| < 1, \] we start by recognizing that the series \(1 + 2x + 3x^2 + 4x^3 + \ldots\) can be expressed as a function. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2x+3)sqrt(x^2+4x+3)dx

Evaluate : int(3x^2+1)dx

Evaluate: int1/(1+x+x^2+x^3)dx

Evaluate: int1/(1+x+x^2+x^3)dx

Evaluate: int(3x)/(1+2x^4)dx

Evaluate: int(2x+1)/(x^2+x+3)dx

Evaluate: int(x-3)/(x^2+2x-4)\ dx

Evaluate: (i) int1/(4x^2-4x+3)\ dx (ii) int1/(x^2+4x+8)\ (iii) int1/(9x^2+6x+10)

Evaluate: int1/(x^4+3x^2+1)\ dx

Evaluate: int(x^3+x^2+2x+1)\ dx