Home
Class 12
MATHS
Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x)...

Evaluate: `int(e^(3x)+e^(5x))/(e^x+e^(-x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^{3x} + e^{5x}}{e^x + e^{-x}} \, dx, \] we can simplify the expression step by step. ### Step 1: Simplify the Denominator The denominator can be rewritten using the property of exponents: \[ e^x + e^{-x} = e^x + \frac{1}{e^x} = \frac{e^{2x} + 1}{e^x}. \] ### Step 2: Rewrite the Integral Now, substituting this back into the integral gives: \[ \int \frac{e^{3x} + e^{5x}}{\frac{e^{2x} + 1}{e^x}} \, dx = \int \frac{(e^{3x} + e^{5x}) e^x}{e^{2x} + 1} \, dx. \] ### Step 3: Simplify the Numerator This simplifies to: \[ \int \frac{e^{4x} + e^{6x}}{e^{2x} + 1} \, dx. \] ### Step 4: Factor Out Common Terms We can factor out \(e^{4x}\) from the numerator: \[ \int \frac{e^{4x}(1 + e^{2x})}{e^{2x} + 1} \, dx. \] ### Step 5: Cancel Common Terms Now, we see that \(1 + e^{2x} = e^{2x} + 1\), thus we can cancel these terms: \[ \int e^{4x} \, dx. \] ### Step 6: Integrate Now we can integrate: \[ \int e^{4x} \, dx = \frac{e^{4x}}{4} + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \frac{e^{4x}}{4} + C. \]

To solve the integral \[ \int \frac{e^{3x} + e^{5x}}{e^x + e^{-x}} \, dx, \] we can simplify the expression step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))\ dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

Evaluate: int(e^(3x))/(e^(3x)+1)dx

inte^x/(e^x+e^(-x))dx

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^(3x))/(4e^(6x)-9)dx

Evaluate: int(e^(3x))/(4e^(6x)-9)dx