Home
Class 12
MATHS
Evaluate int(cosx-sinx)/(cosx+sinx)(2+2...

Evaluate `int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\cos x - \sin x}{(\cos x + \sin x)(2 + 2\sin 2x)} \, dx, \] we can follow these steps: ### Step 1: Simplify the integral First, we can factor out the constant from the denominator: \[ 2 + 2\sin 2x = 2(1 + \sin 2x). \] Thus, we can rewrite the integral as: \[ \int \frac{\cos x - \sin x}{(\cos x + \sin x)(2(1 + \sin 2x))} \, dx = \frac{1}{2} \int \frac{\cos x - \sin x}{(\cos x + \sin x)(1 + \sin 2x)} \, dx. \] ### Step 2: Use the identity for \(\sin 2x\) Recall that \(\sin 2x = 2\sin x \cos x\). Therefore, we can rewrite \(1 + \sin 2x\) as: \[ 1 + \sin 2x = 1 + 2\sin x \cos x. \] ### Step 3: Rewrite the integral Now we can express the integral as: \[ \frac{1}{2} \int \frac{\cos x - \sin x}{(\cos x + \sin x)(1 + 2\sin x \cos x)} \, dx. \] ### Step 4: Substitute \(u = \cos x + \sin x\) Let \(u = \cos x + \sin x\). Then, the derivative \(du\) is: \[ du = (-\sin x + \cos x) \, dx. \] This means that \(\cos x - \sin x = du\). ### Step 5: Change the variable in the integral Now, we can change the variable in the integral: \[ \frac{1}{2} \int \frac{du}{u(1 + 2\sin x \cos x)}. \] ### Step 6: Express \(\sin x \cos x\) in terms of \(u\) Using the identity \(\sin^2 x + \cos^2 x = 1\), we can express \(\sin x \cos x\) as: \[ \sin x \cos x = \frac{1}{2} \sin 2x. \] ### Step 7: Solve the integral Now we can integrate: \[ \frac{1}{2} \int \frac{du}{u(1 + \sin 2x)}. \] This integral can be solved using partial fractions or logarithmic integration techniques. ### Step 8: Final result After integrating and substituting back, we find: \[ \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |\cos x + \sin x| + C. \] ### Conclusion Thus, the final answer is: \[ \frac{1}{2} \ln |\cos x + \sin x| + C. \]

To evaluate the integral \[ \int \frac{\cos x - \sin x}{(\cos x + \sin x)(2 + 2\sin 2x)} \, dx, \] we can follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2cosx-3sinx)/(6cosx+4sinx)dx

Evaluate: int(x-sinx)/(1-cosx)dx

Evaluate: int(x-sinx)/(1-cosx)dx

Evaluate int(x+sinx)/(1+cosx)dx

Evaluate: int(cosx-sinx)/(1+sin2x)\ dx

Evaluate: int(dx)/(cosx-sinx)

Evaluate: int(1-sinx)/(x+cosx)dx

Evaluate: int(2cosx-sinx)/(2sinx+cosx)\ dx

Evaluate: int(cosx)/(2+3sinx)dx

Evaluate: int(5cosx+6)/(2cosx+sinx+3)dx