Home
Class 12
MATHS
Evaluate: (i) int{1+tanxtan(x+theta)}\ d...

Evaluate: (i) `int{1+tanxtan(x+theta)}\ dx` (ii) `int(sin2x)/(sin(x-pi/6)sin(x+pi/6))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): Evaluate \(\int (1 + \tan x \tan (x + \theta)) \, dx\) 1. **Rewrite the integrand**: We can use the identity for \(\tan(a + b)\): \[ \tan(x + \theta) = \frac{\tan x + \tan \theta}{1 - \tan x \tan \theta} \] Thus, we can express \(\tan x \tan(x + \theta)\) as: \[ \tan x \tan(x + \theta) = \tan x \cdot \frac{\tan x + \tan \theta}{1 - \tan x \tan \theta} \] 2. **Simplify the expression**: We can rewrite \(1 + \tan x \tan(x + \theta)\) using the identity: \[ 1 + \tan x \tan(x + \theta) = \frac{1 - \tan x \tan \theta + \tan x \tan x + \tan x \tan \theta}{1 - \tan x \tan \theta} \] This simplifies to: \[ \frac{1 + \tan^2 x}{1 - \tan x \tan \theta} = \frac{\sec^2 x}{1 - \tan x \tan \theta} \] 3. **Integrate**: Now we can integrate: \[ \int \sec^2 x \, dx = \tan x + C \] Therefore, we have: \[ \int (1 + \tan x \tan(x + \theta)) \, dx = \tan x + C \] ### Final Answer for Part (i): \[ \int (1 + \tan x \tan(x + \theta)) \, dx = \tan x + C \] --- ### Part (ii): Evaluate \(\int \frac{\sin 2x}{\sin(x - \frac{\pi}{6}) \sin(x + \frac{\pi}{6})} \, dx\) 1. **Use the product-to-sum identities**: We know that: \[ \sin(a - b) \sin(a + b) = \frac{1}{2} [\cos(2b) - \cos(2a)] \] So, we can write: \[ \sin(x - \frac{\pi}{6}) \sin(x + \frac{\pi}{6}) = \frac{1}{2} [\cos(\frac{\pi}{3}) - \cos(2x)] = \frac{1}{2} \left(\frac{1}{2} - \cos(2x)\right) \] 2. **Rewrite the integral**: This gives us: \[ \int \frac{\sin 2x}{\frac{1}{2} \left(\frac{1}{2} - \cos(2x)\right)} \, dx = 2 \int \frac{\sin 2x}{\frac{1}{2} - \cos(2x)} \, dx \] 3. **Substitution**: Let \(t = \cos(2x)\), then \(dt = -2\sin(2x) \, dx\) or \(-\frac{1}{2} dt = \sin(2x) \, dx\). Thus, we can rewrite the integral as: \[ -\int \frac{1}{\frac{1}{2} - t} \, dt \] 4. **Integrate**: The integral becomes: \[ -2 \ln | \frac{1}{2} - t | + C = -2 \ln | \frac{1}{2} - \cos(2x) | + C \] ### Final Answer for Part (ii): \[ \int \frac{\sin 2x}{\sin(x - \frac{\pi}{6}) \sin(x + \frac{\pi}{6})} \, dx = -2 \ln | \frac{1}{2} - \cos(2x) | + C \] ---

Let's solve the given integrals step by step. ### Part (i): Evaluate \(\int (1 + \tan x \tan (x + \theta)) \, dx\) 1. **Rewrite the integrand**: We can use the identity for \(\tan(a + b)\): \[ \tan(x + \theta) = \frac{\tan x + \tan \theta}{1 - \tan x \tan \theta} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int{1+tanxtan(x+theta)}dx

Evaluate: int(sin2x)/(sin(x-pi/3)sin(x+pi/3))\ dx

Evaluate: int(cosx)/(sin(x-pi/6)sin(x+pi/6))dx

Evaluate: int(cosx)/(sin(x-pi/6)sin(x+pi/6))dx

Evaluate: (i) int(sin4x)/(sin2x)\ dx (ii) int(sin4x)/(cos2x)\ dx

Evaluate: (i) int1/(1+sqrt(x))\ dx (ii) inte^cos^(2x)sin2x\ dx

Evaluate: (i) int1/(1+sqrt(x))\ dx (ii) inte^cos^(2x)sin2x\ dx

Evaluate: (i) int sin( x-a)/ sinx dx (ii) int sinx/sin(x-a )dx

Evaluate: (i) int(sin(x-a))/(sin(x-b))\ dx (ii) int(sin(x-alpha))/(sin(x+alpha))\ dx

Evaluate: (i) int(sin2x)/(acos^2x+bsin^2x)\ dx (ii) int(cosx)/(2+3sinx)\ dx