Home
Class 12
MATHS
Evaluate int(1+x^(2)log(e)x)/(x+x^(2)lo...

Evaluate `int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{1 + x^2 \log_e x}{x + x^2 \log_e x} \, dx, \] we can start by simplifying the integrand. ### Step 1: Simplify the integrand We can rewrite the integrand as follows: \[ \frac{1 + x^2 \log_e x}{x + x^2 \log_e x} = \frac{1 + x^2 \log_e x}{x(1 + x \log_e x)}. \] This allows us to separate the integral into two parts: \[ \int \frac{1}{x(1 + x \log_e x)} \, dx + \int \frac{x \log_e x}{x(1 + x \log_e x)} \, dx. \] This simplifies to: \[ \int \frac{1}{x(1 + x \log_e x)} \, dx + \int \frac{\log_e x}{1 + x \log_e x} \, dx. \] ### Step 2: Evaluate the first integral The first integral is \[ \int \frac{1}{x(1 + x \log_e x)} \, dx. \] We can use partial fraction decomposition here. We can write: \[ \frac{1}{x(1 + x \log_e x)} = \frac{A}{x} + \frac{B}{1 + x \log_e x}. \] Multiplying through by the denominator \(x(1 + x \log_e x)\) and solving for \(A\) and \(B\) will yield the coefficients. ### Step 3: Evaluate the second integral Now, for the second integral: \[ \int \frac{\log_e x}{1 + x \log_e x} \, dx. \] We can use substitution. Let: \[ t = 1 + x \log_e x. \] Then, differentiating gives: \[ dt = (1 + \log_e x) \, dx. \] Rearranging gives: \[ dx = \frac{dt}{1 + \log_e x}. \] Now we can substitute \(x\) in terms of \(t\) and proceed with the integration. ### Step 4: Combine the results After evaluating both integrals, we can combine the results: \[ \int \frac{1 + x^2 \log_e x}{x + x^2 \log_e x} \, dx = \text{(result from first integral)} + \text{(result from second integral)} + C, \] where \(C\) is the constant of integration. ### Final Result After performing the integration and substituting back, we arrive at: \[ \log_e x + x - \log_e(1 + x \log_e x) + C. \]

To evaluate the integral \[ \int \frac{1 + x^2 \log_e x}{x + x^2 \log_e x} \, dx, \] we can start by simplifying the integrand. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int 5^(log _(e)x)dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

Evaluate int(sqrt(x^(2)+1){log_(e)(x^(2)+1)-2logx}dx)/(x^(4)) .

int(1)/(x cos^(2)(log_(e)x))dx

Evaluate lim_(xto1) (x^(2)+xlog_(e)x-log_(e)x-1)/((x^(2))-1)

int((log _(e)x)^(3))/(x)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate : int _(1) ^(e) ( dx)/( x (1 + log x))

int (1+log_e x)/x dx