Home
Class 12
MATHS
I=int \ loge (logex)/(x(loge x))dx...

`I=int \ log_e (log_ex)/(x(log_e x))dx`

Text Solution

Verified by Experts

The correct Answer is:
`((log_(e)(log_(e)x))^(2))/(2)+C`

`intlog_(e)(log_(e)x)*(1)/(x log_(e)x)dx`
`=int log_(e)(log_(e)x)*(log_(e)(log_(e)x))'dx`
`=((log_(e)(log_(e)x))^(2))/(2)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

Find the range of f(x)=log_e x-((log_e x)^2)/(|log_e x|).

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

int1/(xcos^2(log_ex))dx

int (1+log_e x)/x dx

Evaluate: int(e^(5\ (log)_e x)-e^(4\ (log)_e x))/(e^(3\ (log)_e x)-e^(2\ (log)_e x))\ dx