Home
Class 12
MATHS
Evaluate int(sqrt(tanx))/(sinx cosx)dx...

Evaluate `int(sqrt(tanx))/(sinx cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \] We know that \( \tan x = \frac{\sin x}{\cos x} \). Thus, we can rewrite \( \sqrt{\tan x} \) as: \[ \sqrt{\tan x} = \frac{\sqrt{\sin x}}{\sqrt{\cos x}} \] Now, substituting this into the integral gives: \[ I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\sin x}}{\sin x \cos x \sqrt{\cos x}} \, dx = \int \frac{1}{\sin x \sqrt{\cos x}} \, dx \] ### Step 2: Simplify the Integral Next, we can simplify the integral further. We can divide both the numerator and denominator by \( \cos^2 x \): \[ I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\tan x}}{\tan x \sin^2 x} \, dx \] This simplifies to: \[ I = \int \frac{1}{\tan x} \cdot \sin^2 x \, dx \] ### Step 3: Substitution Now, we perform the substitution \( t = \tan x \). Then, we know: \[ \frac{dt}{dx} = \sec^2 x \quad \text{or} \quad dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \] Also, we have: \[ \sin^2 x = \frac{\tan^2 x}{1 + \tan^2 x} = \frac{t^2}{1 + t^2} \] Thus, the integral becomes: \[ I = \int \frac{1}{t} \cdot \frac{t^2}{1 + t^2} \cdot \frac{dt}{1 + t^2} = \int \frac{t}{(1 + t^2)^2} \, dt \] ### Step 4: Solve the Integral Now, we can integrate: \[ I = \int \frac{t}{(1 + t^2)^2} \, dt \] Using the substitution \( u = 1 + t^2 \), we have \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \). The integral becomes: \[ I = \frac{1}{2} \int \frac{1}{u^2} \, du = -\frac{1}{2u} + C = -\frac{1}{2(1 + t^2)} + C \] ### Step 5: Back Substitute Now, substituting back \( t = \tan x \): \[ I = -\frac{1}{2(1 + \tan^2 x)} + C \] Using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ I = -\frac{1}{2 \sec^2 x} + C = -\frac{1}{2} \cos^2 x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = -\frac{1}{2} \cos^2 x + C \]

To evaluate the integral \( \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \] We know that \( \tan x = \frac{\sin x}{\cos x} \). Thus, we can rewrite \( \sqrt{\tan x} \) as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(tanx))/(sinxcosx)dx

Evaluate: int(sqrt(tanx))/(sinxcosx)dx

Evaluate: int(sqrt(tanx))dx

Evaluate: int(sinx+2cosx)/(2sinx+cosx)dx

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

Evaluate: int(sqrt(tanx)+sqrt(cotx))dx

Evaluate: int(sqrt(tanx)+sqrt(cotx))dx

Evaluate: int(5sinx+6)/(sinx+2cosx+3)\ dx

Evaluate int(3cosx+2)/(sinx+2cosx+3) dx

Evaluate: int1/(sqrt(3)sinx+cosx)dx