Home
Class 12
MATHS
Evaluate int "cosec"^(4)x dx...

Evaluate `int "cosec"^(4)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \csc^4 x \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can express \( \csc^4 x \) in terms of \( \csc^2 x \): \[ \csc^4 x = \csc^2 x \cdot \csc^2 x \] Thus, we rewrite the integral as: \[ \int \csc^4 x \, dx = \int \csc^2 x \cdot \csc^2 x \, dx \] ### Step 2: Use the Identity for \( \csc^2 x \) We know that: \[ \csc^2 x = 1 + \cot^2 x \] So, we can substitute this into our integral: \[ \int \csc^4 x \, dx = \int (1 + \cot^2 x) \csc^2 x \, dx \] ### Step 3: Distribute the Integral Now we can separate the integral: \[ \int \csc^4 x \, dx = \int \csc^2 x \, dx + \int \cot^2 x \csc^2 x \, dx \] ### Step 4: Evaluate the First Integral The integral of \( \csc^2 x \) is a standard integral: \[ \int \csc^2 x \, dx = -\cot x \] ### Step 5: Evaluate the Second Integral For the second integral \( \int \cot^2 x \csc^2 x \, dx \), we can use the substitution: Let \( t = \cot x \), then \( dt = -\csc^2 x \, dx \) or \( dx = -\frac{dt}{\csc^2 x} \). Thus, we rewrite the integral: \[ \int \cot^2 x \csc^2 x \, dx = -\int t^2 \, dt \] ### Step 6: Integrate Now we integrate: \[ -\int t^2 \, dt = -\frac{t^3}{3} + C = -\frac{\cot^3 x}{3} + C \] ### Step 7: Combine the Results Now we combine the results of both integrals: \[ \int \csc^4 x \, dx = -\cot x - \frac{\cot^3 x}{3} + C \] ### Final Answer Thus, the final answer is: \[ \int \csc^4 x \, dx = -\cot x - \frac{\cot^3 x}{3} + C \] ---

To evaluate the integral \( \int \csc^4 x \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can express \( \csc^4 x \) in terms of \( \csc^2 x \): \[ \csc^4 x = \csc^2 x \cdot \csc^2 x \] Thus, we rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int " cosec"^(4) 2x dx

Evaluate : int " cosec"x dx

int " cosec"^(3) " x dx "

Evaluate: int cosec^(4)((x)/(2))dx

Evaluate int cosec^(2)x ln (cos x + sqrt(cos 2x))dx .

Evaluate intcotx.cosec^2x \dx

Evaluate: int x^(3)cosec^(2)x^(4)dx

Evaluate : int (1)/(" cosec x ") " dx "

int cosec^(2)(x)/(3)dx

intcot^3x cosec^4x dx