Home
Class 12
MATHS
Evaluate int(sin^(6)x)/(cos^(8)x)dx...

Evaluate `int(sin^(6)x)/(cos^(8)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{\sin^6 x}{\cos^8 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the integral We can rewrite the integral in a more manageable form: \[ \int \frac{\sin^6 x}{\cos^8 x} \, dx = \int \frac{\sin^6 x}{\cos^6 x} \cdot \frac{1}{\cos^2 x} \, dx \] This can be expressed as: \[ \int \tan^6 x \cdot \sec^2 x \, dx \] ### Step 2: Use substitution Let \( t = \tan x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] Substituting \( t \) into the integral gives: \[ \int t^6 \sec^2 x \cdot \frac{dt}{\sec^2 x} = \int t^6 \, dt \] ### Step 3: Integrate Now we can integrate \( t^6 \): \[ \int t^6 \, dt = \frac{t^{7}}{7} + C \] ### Step 4: Substitute back Now, we substitute back \( t = \tan x \): \[ \frac{\tan^7 x}{7} + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{\sin^6 x}{\cos^8 x} \, dx = \frac{\tan^7 x}{7} + C \]

To evaluate the integral \(\int \frac{\sin^6 x}{\cos^8 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the integral We can rewrite the integral in a more manageable form: \[ \int \frac{\sin^6 x}{\cos^8 x} \, dx = \int \frac{\sin^6 x}{\cos^6 x} \cdot \frac{1}{\cos^2 x} \, dx \] This can be expressed as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int{(sin^(n)x)/(cos^(n+6)x)}^((1)/(3))dx .

Evaluate: int(sin^4x)/(cos^8x)\ dx

Evaluate int(4)/(sin^(4)x+cos^(4)x)dx

Find int(sin^6x)/(cos^8x)dx .

Evaluate: int(sin^2x)/(cos^6x)\ dx

Evaluate: int(sin^5x)/(cos^4x)\ dx

Find int(sin^6x)/(cos^8x)dxdot

Evaluate: int(sin^6x)/(cosx)\ dx

Evaluate: int(sin^5x)/(cos^4x)dx

Evaluate : int(sin(x-a))/(sin(x+a))dx