Home
Class 12
MATHS
Evaluate: int(sinx)/(sin(x-a))\ dx...

Evaluate: `int(sinx)/(sin(x-a))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{\sin x}{\sin(x-a)} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\sin x}{\sin(x-a)} \, dx = \int \frac{\sin(x-a + a)}{\sin(x-a)} \, dx \] This allows us to use the sine addition formula. ### Step 2: Apply the Sine Addition Formula Using the sine addition formula \(\sin(A + B) = \sin A \cos B + \cos A \sin B\), we can express \(\sin(x-a + a)\) as: \[ \sin(x-a + a) = \sin(x-a) \cos a + \cos(x-a) \sin a \] Substituting this back into the integral gives: \[ \int \frac{\sin(x-a) \cos a + \cos(x-a) \sin a}{\sin(x-a)} \, dx \] ### Step 3: Simplify the Integral This simplifies to: \[ \int \left( \cos a + \frac{\cos(x-a) \sin a}{\sin(x-a)} \right) \, dx \] Now we can separate the integral: \[ \int \cos a \, dx + \int \frac{\cos(x-a) \sin a}{\sin(x-a)} \, dx \] ### Step 4: Evaluate the First Integral The first integral is straightforward: \[ \int \cos a \, dx = \cos a \cdot x \] ### Step 5: Evaluate the Second Integral For the second integral, we can use the substitution: Let \(t = \sin(x-a)\). Then, differentiating gives: \[ dt = \cos(x-a) \, dx \quad \Rightarrow \quad dx = \frac{dt}{\cos(x-a)} \] Now substituting \(t\) into the integral: \[ \int \frac{\sin a}{t} \, dt \] This integral evaluates to: \[ \sin a \ln |t| + C = \sin a \ln |\sin(x-a)| + C \] ### Step 6: Combine Results Combining both parts, we have: \[ \int \frac{\sin x}{\sin(x-a)} \, dx = \cos a \cdot x + \sin a \ln |\sin(x-a)| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{\sin x}{\sin(x-a)} \, dx = \cos a \cdot x + \sin a \ln |\sin(x-a)| + C \]

To evaluate the integral \(\int \frac{\sin x}{\sin(x-a)} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\sin x}{\sin(x-a)} \, dx = \int \frac{\sin(x-a + a)}{\sin(x-a)} \, dx \] This allows us to use the sine addition formula. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sin(x-a))/(sinx)\ dx

Evaluate: int(sinx)/(2+sin2x)dx

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate : int(sinx+cosx)/(sin(x-a))dx