Home
Class 12
MATHS
Evaluate int tan^(3)x dx...

Evaluate `int tan^(3)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \tan^3 x \) in terms of \( \tan^2 x \): \[ \int \tan^3 x \, dx = \int \tan^2 x \tan x \, dx \] Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can express the integral as: \[ \int \tan^3 x \, dx = \int (\sec^2 x - 1) \tan x \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ \int \tan^3 x \, dx = \int \sec^2 x \tan x \, dx - \int \tan x \, dx \] ### Step 3: Evaluate the First Integral The first integral \( \int \sec^2 x \tan x \, dx \) can be evaluated using the substitution \( u = \tan x \). Then, \( du = \sec^2 x \, dx \), which gives: \[ \int \sec^2 x \tan x \, dx = \int u \, du = \frac{u^2}{2} + C = \frac{\tan^2 x}{2} + C \] ### Step 4: Evaluate the Second Integral The second integral \( \int \tan x \, dx \) is a standard integral: \[ \int \tan x \, dx = -\log |\cos x| + C = \log |\sec x| + C \] ### Step 5: Combine the Results Now, substituting back into our expression, we have: \[ \int \tan^3 x \, dx = \frac{\tan^2 x}{2} - \log |\sec x| + C \] ### Final Result Thus, the final result for the integral \( \int \tan^3 x \, dx \) is: \[ \int \tan^3 x \, dx = \frac{\tan^2 x}{2} - \log |\sec x| + C \]

To evaluate the integral \( \int \tan^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \tan^3 x \) in terms of \( \tan^2 x \): \[ \int \tan^3 x \, dx = \int \tan^2 x \tan x \, dx \] Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan^(-1) x dx

Evaluate : int(tan^(2)x)dx Evalauate: int1/(1+sinx) dx

int (tan^(-1)x)dx

Evaluate int tan ^(2) x sec^(4) x dx

Evaluate: int tan ^(-1) sqrt x dx

Evaluate int(tan^(-1)x)/(x^(4))dx .

Evaluate: int (x-3)(5-x) dx

Evaluate int\tan^2x\dx

Evaluate int x sin 3x dx .

Evaluate int x sin 3x dx .