Home
Class 12
MATHS
Evaluate: int1/(x^2sqrt(1+x^2))dx...

Evaluate: `int1/(x^2sqrt(1+x^2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{1}{x^2 \sqrt{1+x^2}} \, dx, \] we will use the substitution \( x = \tan \theta \). ### Step 1: Substitution Let \( x = \tan \theta \). Then, the differential \( dx \) is given by: \[ dx = \sec^2 \theta \, d\theta. \] ### Step 2: Substitute in the integral Now substitute \( x \) and \( dx \) into the integral: \[ \int \frac{1}{\tan^2 \theta \sqrt{1+\tan^2 \theta}} \sec^2 \theta \, d\theta. \] ### Step 3: Simplify the expression Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we have: \[ \sqrt{1 + \tan^2 \theta} = \sqrt{\sec^2 \theta} = \sec \theta. \] Thus, the integral becomes: \[ \int \frac{\sec^2 \theta}{\tan^2 \theta \sec \theta} \, d\theta = \int \frac{\sec \theta}{\tan^2 \theta} \, d\theta. \] ### Step 4: Rewrite in terms of sine and cosine Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \). Therefore, we can rewrite the integral as: \[ \int \frac{1/\cos \theta}{(\sin^2 \theta / \cos^2 \theta)} \, d\theta = \int \frac{\cos^2 \theta}{\sin^2 \theta} \, d\theta = \int \cot^2 \theta \, d\theta. \] ### Step 5: Use the identity for cotangent We know that: \[ \cot^2 \theta = \csc^2 \theta - 1. \] Thus, we can rewrite the integral: \[ \int \cot^2 \theta \, d\theta = \int (\csc^2 \theta - 1) \, d\theta = \int \csc^2 \theta \, d\theta - \int 1 \, d\theta. \] ### Step 6: Integrate The integral of \( \csc^2 \theta \) is: \[ -\cot \theta, \] and the integral of \( 1 \) is: \[ \theta. \] So we have: \[ \int \cot^2 \theta \, d\theta = -\cot \theta - \theta + C. \] ### Step 7: Substitute back to \( x \) Recall that \( x = \tan \theta \), so: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{x}. \] Also, from the triangle formed by \( \tan \theta \), we have: \[ \sin \theta = \frac{x}{\sqrt{1+x^2}}, \quad \cos \theta = \frac{1}{\sqrt{1+x^2}}. \] Thus, \[ \theta = \tan^{-1}(x). \] Putting it all together, we have: \[ -\cot \theta - \theta + C = -\frac{1}{x} - \tan^{-1}(x) + C. \] ### Final Answer The evaluated integral is: \[ \int \frac{1}{x^2 \sqrt{1+x^2}} \, dx = -\frac{1}{x} - \tan^{-1}(x) + C. \]

To evaluate the integral \[ \int \frac{1}{x^2 \sqrt{1+x^2}} \, dx, \] we will use the substitution \( x = \tan \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/((x^2)sqrt(1-x^2))dx

Evaluate: int1/((1+x^2)sqrt(1-x^2))dx

Evaluate: int1/((1+x^2)sqrt(1-x^2))\ dx

Evaluate: int1/(x^3sqrt(x^2-a^2))dx

Evaluate: int1/(x+sqrt(x^2-x+1))dx

Evaluate: int1/(sqrt(1-x^2))\ dx

Evaluate: int1/((x^2-1)sqrt(x^2+1))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))dx

Evaluate: int1/((x+1)sqrt(x^2-1))dx

Evaluate: int1/((x+1)sqrt(x^2-1))dx