Home
Class 12
MATHS
Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n ...

Let `g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0.` then the value of `8g(pi/2)` is __________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral defined by the function \( g(x) \) and then find the value of \( 8g\left(\frac{\pi}{2}\right) \). ### Step-by-Step Solution: 1. **Define the function \( g(x) \)**: \[ g(x) = \int \frac{1 + 2 \cos x}{(\cos x + 2)^2} \, dx \] 2. **Rewrite the integrand**: We can separate the integrand: \[ g(x) = \int \frac{1}{(\cos x + 2)^2} \, dx + \int \frac{2 \cos x}{(\cos x + 2)^2} \, dx \] 3. **Integrate the first term**: Let \( u = \cos x + 2 \), then \( du = -\sin x \, dx \). The limits change accordingly when substituting, but we will focus on the indefinite integral for now: \[ \int \frac{1}{u^2} (-du) = -\frac{1}{u} = -\frac{1}{\cos x + 2} \] 4. **Integrate the second term using integration by parts**: For the second term \( \int \frac{2 \cos x}{(\cos x + 2)^2} \, dx \), we can use integration by parts: - Let \( u = \frac{1}{\cos x + 2} \) and \( dv = 2 \cos x \, dx \). - Then \( du = -\frac{\sin x}{(\cos x + 2)^2} \, dx \) and \( v = 2 \sin x \). Applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives: \[ \frac{2 \sin x}{\cos x + 2} - \int 2 \sin x \left(-\frac{\sin x}{(\cos x + 2)^2}\right) \, dx \] 5. **Combine results**: After performing the integration by parts, we can combine the results: \[ g(x) = -\frac{1}{\cos x + 2} + \frac{2 \sin x}{\cos x + 2} + C \] 6. **Determine the constant \( C \)**: Given that \( g(0) = 0 \): \[ g(0) = -\frac{1}{\cos(0) + 2} + \frac{2 \sin(0)}{\cos(0) + 2} + C = 0 \] \[ -\frac{1}{1 + 2} + 0 + C = 0 \implies C = \frac{1}{3} \] 7. **Final expression for \( g(x) \)**: \[ g(x) = -\frac{1}{\cos x + 2} + \frac{2 \sin x}{\cos x + 2} + \frac{1}{3} \] 8. **Evaluate \( g\left(\frac{\pi}{2}\right) \)**: \[ g\left(\frac{\pi}{2}\right) = -\frac{1}{\cos\left(\frac{\pi}{2}\right) + 2} + \frac{2 \sin\left(\frac{\pi}{2}\right)}{\cos\left(\frac{\pi}{2}\right) + 2} + \frac{1}{3} \] \[ = -\frac{1}{0 + 2} + \frac{2 \cdot 1}{0 + 2} + \frac{1}{3} = -\frac{1}{2} + 1 + \frac{1}{3} \] \[ = \frac{2}{2} - \frac{1}{2} + \frac{1}{3} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] 9. **Calculate \( 8g\left(\frac{\pi}{2}\right) \)**: \[ 8g\left(\frac{\pi}{2}\right) = 8 \cdot \frac{5}{6} = \frac{40}{6} = \frac{20}{3} \] Thus, the final answer is: \[ \boxed{\frac{20}{3}} \]

To solve the problem, we need to evaluate the integral defined by the function \( g(x) \) and then find the value of \( 8g\left(\frac{\pi}{2}\right) \). ### Step-by-Step Solution: 1. **Define the function \( g(x) \)**: \[ g(x) = \int \frac{1 + 2 \cos x}{(\cos x + 2)^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int_0^pisin^3x(1+2cosx)(1+cosx)^2dx

int_0^(pi/2) cosx/(1+sinx)dx

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let g(x) be differentiable on R and int_(sint)^1x^2g(x)dx=(1-sint), where t in (0,pi/2)dot Then the value of g(1/(sqrt(2))) is____

Let g(x) be differentiable on R and int_(sint)^1x^2g(x)dx=(1-sint), where t in (0,pi/2)dot Then the value of g(1/(sqrt(2))) is____

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_0^(pi/2) cosx/sqrt(1+sinx)dx

If l=int_(0)^(pi//2)(cosx)/(1+sin^(2)x)dx , then (4)/(pi)l is _______.